Metamath Proof Explorer


Theorem sqdivid

Description: The square of a nonzero number divided by itself yields the number itself. (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion sqdivid
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) / A ) = A )

Proof

Step Hyp Ref Expression
1 sqval
 |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) )
2 1 adantr
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( A ^ 2 ) = ( A x. A ) )
3 2 oveq1d
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) / A ) = ( ( A x. A ) / A ) )
4 divcan3
 |-  ( ( A e. CC /\ A e. CC /\ A =/= 0 ) -> ( ( A x. A ) / A ) = A )
5 4 3anidm12
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. A ) / A ) = A )
6 3 5 eqtrd
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) / A ) = A )