Metamath Proof Explorer


Theorem sqeq0d

Description: A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
sqeq0d.1
|- ( ph -> ( A ^ 2 ) = 0 )
Assertion sqeq0d
|- ( ph -> A = 0 )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 sqeq0d.1
 |-  ( ph -> ( A ^ 2 ) = 0 )
3 2nn
 |-  2 e. NN
4 3 a1i
 |-  ( ph -> 2 e. NN )
5 1 4 2 expeq0d
 |-  ( ph -> A = 0 )