Step |
Hyp |
Ref |
Expression |
1 |
|
sqeqd.1 |
|- ( ph -> A e. CC ) |
2 |
|
sqeqd.2 |
|- ( ph -> B e. CC ) |
3 |
|
sqeqd.3 |
|- ( ph -> ( A ^ 2 ) = ( B ^ 2 ) ) |
4 |
|
sqeqd.4 |
|- ( ph -> 0 <_ ( Re ` A ) ) |
5 |
|
sqeqd.5 |
|- ( ph -> 0 <_ ( Re ` B ) ) |
6 |
|
sqeqd.6 |
|- ( ( ph /\ ( Re ` A ) = 0 /\ ( Re ` B ) = 0 ) -> A = B ) |
7 |
|
sqeqor |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) ) |
8 |
1 2 7
|
syl2anc |
|- ( ph -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) ) |
9 |
3 8
|
mpbid |
|- ( ph -> ( A = B \/ A = -u B ) ) |
10 |
9
|
ord |
|- ( ph -> ( -. A = B -> A = -u B ) ) |
11 |
|
simpl |
|- ( ( ph /\ A = -u B ) -> ph ) |
12 |
|
fveq2 |
|- ( A = -u B -> ( Re ` A ) = ( Re ` -u B ) ) |
13 |
|
reneg |
|- ( B e. CC -> ( Re ` -u B ) = -u ( Re ` B ) ) |
14 |
2 13
|
syl |
|- ( ph -> ( Re ` -u B ) = -u ( Re ` B ) ) |
15 |
12 14
|
sylan9eqr |
|- ( ( ph /\ A = -u B ) -> ( Re ` A ) = -u ( Re ` B ) ) |
16 |
4
|
adantr |
|- ( ( ph /\ A = -u B ) -> 0 <_ ( Re ` A ) ) |
17 |
16 15
|
breqtrd |
|- ( ( ph /\ A = -u B ) -> 0 <_ -u ( Re ` B ) ) |
18 |
2
|
adantr |
|- ( ( ph /\ A = -u B ) -> B e. CC ) |
19 |
|
recl |
|- ( B e. CC -> ( Re ` B ) e. RR ) |
20 |
18 19
|
syl |
|- ( ( ph /\ A = -u B ) -> ( Re ` B ) e. RR ) |
21 |
20
|
le0neg1d |
|- ( ( ph /\ A = -u B ) -> ( ( Re ` B ) <_ 0 <-> 0 <_ -u ( Re ` B ) ) ) |
22 |
17 21
|
mpbird |
|- ( ( ph /\ A = -u B ) -> ( Re ` B ) <_ 0 ) |
23 |
5
|
adantr |
|- ( ( ph /\ A = -u B ) -> 0 <_ ( Re ` B ) ) |
24 |
|
0re |
|- 0 e. RR |
25 |
|
letri3 |
|- ( ( ( Re ` B ) e. RR /\ 0 e. RR ) -> ( ( Re ` B ) = 0 <-> ( ( Re ` B ) <_ 0 /\ 0 <_ ( Re ` B ) ) ) ) |
26 |
20 24 25
|
sylancl |
|- ( ( ph /\ A = -u B ) -> ( ( Re ` B ) = 0 <-> ( ( Re ` B ) <_ 0 /\ 0 <_ ( Re ` B ) ) ) ) |
27 |
22 23 26
|
mpbir2and |
|- ( ( ph /\ A = -u B ) -> ( Re ` B ) = 0 ) |
28 |
27
|
negeqd |
|- ( ( ph /\ A = -u B ) -> -u ( Re ` B ) = -u 0 ) |
29 |
|
neg0 |
|- -u 0 = 0 |
30 |
28 29
|
eqtrdi |
|- ( ( ph /\ A = -u B ) -> -u ( Re ` B ) = 0 ) |
31 |
15 30
|
eqtrd |
|- ( ( ph /\ A = -u B ) -> ( Re ` A ) = 0 ) |
32 |
11 31 27 6
|
syl3anc |
|- ( ( ph /\ A = -u B ) -> A = B ) |
33 |
32
|
ex |
|- ( ph -> ( A = -u B -> A = B ) ) |
34 |
10 33
|
syld |
|- ( ph -> ( -. A = B -> A = B ) ) |
35 |
34
|
pm2.18d |
|- ( ph -> A = B ) |