Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( A = if ( A e. CC , A , 0 ) -> ( A ^ 2 ) = ( if ( A e. CC , A , 0 ) ^ 2 ) ) |
2 |
1
|
eqeq1d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( if ( A e. CC , A , 0 ) ^ 2 ) = ( B ^ 2 ) ) ) |
3 |
|
eqeq1 |
|- ( A = if ( A e. CC , A , 0 ) -> ( A = B <-> if ( A e. CC , A , 0 ) = B ) ) |
4 |
|
eqeq1 |
|- ( A = if ( A e. CC , A , 0 ) -> ( A = -u B <-> if ( A e. CC , A , 0 ) = -u B ) ) |
5 |
3 4
|
orbi12d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( A = B \/ A = -u B ) <-> ( if ( A e. CC , A , 0 ) = B \/ if ( A e. CC , A , 0 ) = -u B ) ) ) |
6 |
2 5
|
bibi12d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) <-> ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( B ^ 2 ) <-> ( if ( A e. CC , A , 0 ) = B \/ if ( A e. CC , A , 0 ) = -u B ) ) ) ) |
7 |
|
oveq1 |
|- ( B = if ( B e. CC , B , 0 ) -> ( B ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) ) |
8 |
7
|
eqeq2d |
|- ( B = if ( B e. CC , B , 0 ) -> ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( B ^ 2 ) <-> ( if ( A e. CC , A , 0 ) ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) ) ) |
9 |
|
eqeq2 |
|- ( B = if ( B e. CC , B , 0 ) -> ( if ( A e. CC , A , 0 ) = B <-> if ( A e. CC , A , 0 ) = if ( B e. CC , B , 0 ) ) ) |
10 |
|
negeq |
|- ( B = if ( B e. CC , B , 0 ) -> -u B = -u if ( B e. CC , B , 0 ) ) |
11 |
10
|
eqeq2d |
|- ( B = if ( B e. CC , B , 0 ) -> ( if ( A e. CC , A , 0 ) = -u B <-> if ( A e. CC , A , 0 ) = -u if ( B e. CC , B , 0 ) ) ) |
12 |
9 11
|
orbi12d |
|- ( B = if ( B e. CC , B , 0 ) -> ( ( if ( A e. CC , A , 0 ) = B \/ if ( A e. CC , A , 0 ) = -u B ) <-> ( if ( A e. CC , A , 0 ) = if ( B e. CC , B , 0 ) \/ if ( A e. CC , A , 0 ) = -u if ( B e. CC , B , 0 ) ) ) ) |
13 |
8 12
|
bibi12d |
|- ( B = if ( B e. CC , B , 0 ) -> ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( B ^ 2 ) <-> ( if ( A e. CC , A , 0 ) = B \/ if ( A e. CC , A , 0 ) = -u B ) ) <-> ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) <-> ( if ( A e. CC , A , 0 ) = if ( B e. CC , B , 0 ) \/ if ( A e. CC , A , 0 ) = -u if ( B e. CC , B , 0 ) ) ) ) ) |
14 |
|
0cn |
|- 0 e. CC |
15 |
14
|
elimel |
|- if ( A e. CC , A , 0 ) e. CC |
16 |
14
|
elimel |
|- if ( B e. CC , B , 0 ) e. CC |
17 |
15 16
|
sqeqori |
|- ( ( if ( A e. CC , A , 0 ) ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) <-> ( if ( A e. CC , A , 0 ) = if ( B e. CC , B , 0 ) \/ if ( A e. CC , A , 0 ) = -u if ( B e. CC , B , 0 ) ) ) |
18 |
6 13 17
|
dedth2h |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) ) |