| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binom2.1 |
|- A e. CC |
| 2 |
|
binom2.2 |
|- B e. CC |
| 3 |
1 2
|
subsqi |
|- ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) |
| 4 |
3
|
eqeq1i |
|- ( ( ( A ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( ( A + B ) x. ( A - B ) ) = 0 ) |
| 5 |
1
|
sqcli |
|- ( A ^ 2 ) e. CC |
| 6 |
2
|
sqcli |
|- ( B ^ 2 ) e. CC |
| 7 |
5 6
|
subeq0i |
|- ( ( ( A ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( A ^ 2 ) = ( B ^ 2 ) ) |
| 8 |
1 2
|
addcli |
|- ( A + B ) e. CC |
| 9 |
1 2
|
subcli |
|- ( A - B ) e. CC |
| 10 |
8 9
|
mul0ori |
|- ( ( ( A + B ) x. ( A - B ) ) = 0 <-> ( ( A + B ) = 0 \/ ( A - B ) = 0 ) ) |
| 11 |
4 7 10
|
3bitr3i |
|- ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( ( A + B ) = 0 \/ ( A - B ) = 0 ) ) |
| 12 |
|
orcom |
|- ( ( ( A + B ) = 0 \/ ( A - B ) = 0 ) <-> ( ( A - B ) = 0 \/ ( A + B ) = 0 ) ) |
| 13 |
1 2
|
subeq0i |
|- ( ( A - B ) = 0 <-> A = B ) |
| 14 |
1 2
|
subnegi |
|- ( A - -u B ) = ( A + B ) |
| 15 |
14
|
eqeq1i |
|- ( ( A - -u B ) = 0 <-> ( A + B ) = 0 ) |
| 16 |
2
|
negcli |
|- -u B e. CC |
| 17 |
1 16
|
subeq0i |
|- ( ( A - -u B ) = 0 <-> A = -u B ) |
| 18 |
15 17
|
bitr3i |
|- ( ( A + B ) = 0 <-> A = -u B ) |
| 19 |
13 18
|
orbi12i |
|- ( ( ( A - B ) = 0 \/ ( A + B ) = 0 ) <-> ( A = B \/ A = -u B ) ) |
| 20 |
11 12 19
|
3bitri |
|- ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) |