Step |
Hyp |
Ref |
Expression |
1 |
|
issqf |
|- ( A e. NN -> ( ( mmu ` A ) =/= 0 <-> A. p e. Prime ( p pCnt A ) <_ 1 ) ) |
2 |
1
|
biimpa |
|- ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) -> A. p e. Prime ( p pCnt A ) <_ 1 ) |
3 |
|
oveq1 |
|- ( p = P -> ( p pCnt A ) = ( P pCnt A ) ) |
4 |
3
|
breq1d |
|- ( p = P -> ( ( p pCnt A ) <_ 1 <-> ( P pCnt A ) <_ 1 ) ) |
5 |
4
|
rspccv |
|- ( A. p e. Prime ( p pCnt A ) <_ 1 -> ( P e. Prime -> ( P pCnt A ) <_ 1 ) ) |
6 |
2 5
|
syl |
|- ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) -> ( P e. Prime -> ( P pCnt A ) <_ 1 ) ) |
7 |
6
|
3impia |
|- ( ( A e. NN /\ ( mmu ` A ) =/= 0 /\ P e. Prime ) -> ( P pCnt A ) <_ 1 ) |