Step |
Hyp |
Ref |
Expression |
1 |
|
gcdnncl |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN ) |
2 |
1
|
nnsqcld |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) e. NN ) |
3 |
2
|
nncnd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) e. CC ) |
4 |
3
|
mulid1d |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M gcd N ) ^ 2 ) ) |
5 |
|
nnsqcl |
|- ( M e. NN -> ( M ^ 2 ) e. NN ) |
6 |
5
|
nnzd |
|- ( M e. NN -> ( M ^ 2 ) e. ZZ ) |
7 |
6
|
adantr |
|- ( ( M e. NN /\ N e. NN ) -> ( M ^ 2 ) e. ZZ ) |
8 |
|
nnsqcl |
|- ( N e. NN -> ( N ^ 2 ) e. NN ) |
9 |
8
|
nnzd |
|- ( N e. NN -> ( N ^ 2 ) e. ZZ ) |
10 |
9
|
adantl |
|- ( ( M e. NN /\ N e. NN ) -> ( N ^ 2 ) e. ZZ ) |
11 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
12 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
13 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
14 |
11 12 13
|
syl2an |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
15 |
14
|
simpld |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || M ) |
16 |
1
|
nnzd |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. ZZ ) |
17 |
11
|
adantr |
|- ( ( M e. NN /\ N e. NN ) -> M e. ZZ ) |
18 |
|
dvdssqim |
|- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ ) -> ( ( M gcd N ) || M -> ( ( M gcd N ) ^ 2 ) || ( M ^ 2 ) ) ) |
19 |
16 17 18
|
syl2anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M -> ( ( M gcd N ) ^ 2 ) || ( M ^ 2 ) ) ) |
20 |
15 19
|
mpd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) || ( M ^ 2 ) ) |
21 |
14
|
simprd |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || N ) |
22 |
12
|
adantl |
|- ( ( M e. NN /\ N e. NN ) -> N e. ZZ ) |
23 |
|
dvdssqim |
|- ( ( ( M gcd N ) e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || N -> ( ( M gcd N ) ^ 2 ) || ( N ^ 2 ) ) ) |
24 |
16 22 23
|
syl2anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || N -> ( ( M gcd N ) ^ 2 ) || ( N ^ 2 ) ) ) |
25 |
21 24
|
mpd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) || ( N ^ 2 ) ) |
26 |
|
gcddiv |
|- ( ( ( ( M ^ 2 ) e. ZZ /\ ( N ^ 2 ) e. ZZ /\ ( ( M gcd N ) ^ 2 ) e. NN ) /\ ( ( ( M gcd N ) ^ 2 ) || ( M ^ 2 ) /\ ( ( M gcd N ) ^ 2 ) || ( N ^ 2 ) ) ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = ( ( ( M ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) gcd ( ( N ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) ) |
27 |
7 10 2 20 25 26
|
syl32anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = ( ( ( M ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) gcd ( ( N ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) ) |
28 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
29 |
28
|
adantr |
|- ( ( M e. NN /\ N e. NN ) -> M e. CC ) |
30 |
1
|
nncnd |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. CC ) |
31 |
1
|
nnne0d |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) =/= 0 ) |
32 |
29 30 31
|
sqdivd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M / ( M gcd N ) ) ^ 2 ) = ( ( M ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) |
33 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
34 |
33
|
adantl |
|- ( ( M e. NN /\ N e. NN ) -> N e. CC ) |
35 |
34 30 31
|
sqdivd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( N / ( M gcd N ) ) ^ 2 ) = ( ( N ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) |
36 |
32 35
|
oveq12d |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = ( ( ( M ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) gcd ( ( N ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) ) |
37 |
|
gcddiv |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( M gcd N ) e. NN ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) -> ( ( M gcd N ) / ( M gcd N ) ) = ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) ) |
38 |
17 22 1 14 37
|
syl31anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) / ( M gcd N ) ) = ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) ) |
39 |
30 31
|
dividd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) / ( M gcd N ) ) = 1 ) |
40 |
38 39
|
eqtr3d |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) = 1 ) |
41 |
|
dvdsval2 |
|- ( ( ( M gcd N ) e. ZZ /\ ( M gcd N ) =/= 0 /\ M e. ZZ ) -> ( ( M gcd N ) || M <-> ( M / ( M gcd N ) ) e. ZZ ) ) |
42 |
16 31 17 41
|
syl3anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M <-> ( M / ( M gcd N ) ) e. ZZ ) ) |
43 |
15 42
|
mpbid |
|- ( ( M e. NN /\ N e. NN ) -> ( M / ( M gcd N ) ) e. ZZ ) |
44 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
45 |
44
|
adantr |
|- ( ( M e. NN /\ N e. NN ) -> M e. RR ) |
46 |
1
|
nnred |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. RR ) |
47 |
|
nngt0 |
|- ( M e. NN -> 0 < M ) |
48 |
47
|
adantr |
|- ( ( M e. NN /\ N e. NN ) -> 0 < M ) |
49 |
1
|
nngt0d |
|- ( ( M e. NN /\ N e. NN ) -> 0 < ( M gcd N ) ) |
50 |
45 46 48 49
|
divgt0d |
|- ( ( M e. NN /\ N e. NN ) -> 0 < ( M / ( M gcd N ) ) ) |
51 |
|
elnnz |
|- ( ( M / ( M gcd N ) ) e. NN <-> ( ( M / ( M gcd N ) ) e. ZZ /\ 0 < ( M / ( M gcd N ) ) ) ) |
52 |
43 50 51
|
sylanbrc |
|- ( ( M e. NN /\ N e. NN ) -> ( M / ( M gcd N ) ) e. NN ) |
53 |
|
dvdsval2 |
|- ( ( ( M gcd N ) e. ZZ /\ ( M gcd N ) =/= 0 /\ N e. ZZ ) -> ( ( M gcd N ) || N <-> ( N / ( M gcd N ) ) e. ZZ ) ) |
54 |
16 31 22 53
|
syl3anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || N <-> ( N / ( M gcd N ) ) e. ZZ ) ) |
55 |
21 54
|
mpbid |
|- ( ( M e. NN /\ N e. NN ) -> ( N / ( M gcd N ) ) e. ZZ ) |
56 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
57 |
56
|
adantl |
|- ( ( M e. NN /\ N e. NN ) -> N e. RR ) |
58 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
59 |
58
|
adantl |
|- ( ( M e. NN /\ N e. NN ) -> 0 < N ) |
60 |
57 46 59 49
|
divgt0d |
|- ( ( M e. NN /\ N e. NN ) -> 0 < ( N / ( M gcd N ) ) ) |
61 |
|
elnnz |
|- ( ( N / ( M gcd N ) ) e. NN <-> ( ( N / ( M gcd N ) ) e. ZZ /\ 0 < ( N / ( M gcd N ) ) ) ) |
62 |
55 60 61
|
sylanbrc |
|- ( ( M e. NN /\ N e. NN ) -> ( N / ( M gcd N ) ) e. NN ) |
63 |
|
2nn |
|- 2 e. NN |
64 |
|
rppwr |
|- ( ( ( M / ( M gcd N ) ) e. NN /\ ( N / ( M gcd N ) ) e. NN /\ 2 e. NN ) -> ( ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) = 1 -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = 1 ) ) |
65 |
63 64
|
mp3an3 |
|- ( ( ( M / ( M gcd N ) ) e. NN /\ ( N / ( M gcd N ) ) e. NN ) -> ( ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) = 1 -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = 1 ) ) |
66 |
52 62 65
|
syl2anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) = 1 -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = 1 ) ) |
67 |
40 66
|
mpd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = 1 ) |
68 |
27 36 67
|
3eqtr2d |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = 1 ) |
69 |
6 9
|
anim12i |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M ^ 2 ) e. ZZ /\ ( N ^ 2 ) e. ZZ ) ) |
70 |
5
|
nnne0d |
|- ( M e. NN -> ( M ^ 2 ) =/= 0 ) |
71 |
70
|
neneqd |
|- ( M e. NN -> -. ( M ^ 2 ) = 0 ) |
72 |
71
|
intnanrd |
|- ( M e. NN -> -. ( ( M ^ 2 ) = 0 /\ ( N ^ 2 ) = 0 ) ) |
73 |
72
|
adantr |
|- ( ( M e. NN /\ N e. NN ) -> -. ( ( M ^ 2 ) = 0 /\ ( N ^ 2 ) = 0 ) ) |
74 |
|
gcdn0cl |
|- ( ( ( ( M ^ 2 ) e. ZZ /\ ( N ^ 2 ) e. ZZ ) /\ -. ( ( M ^ 2 ) = 0 /\ ( N ^ 2 ) = 0 ) ) -> ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. NN ) |
75 |
69 73 74
|
syl2anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. NN ) |
76 |
75
|
nncnd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. CC ) |
77 |
2
|
nnne0d |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) =/= 0 ) |
78 |
|
ax-1cn |
|- 1 e. CC |
79 |
|
divmul |
|- ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. CC /\ 1 e. CC /\ ( ( ( M gcd N ) ^ 2 ) e. CC /\ ( ( M gcd N ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = 1 <-> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) ) |
80 |
78 79
|
mp3an2 |
|- ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. CC /\ ( ( ( M gcd N ) ^ 2 ) e. CC /\ ( ( M gcd N ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = 1 <-> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) ) |
81 |
76 3 77 80
|
syl12anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = 1 <-> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) ) |
82 |
68 81
|
mpbid |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |
83 |
4 82
|
eqtr3d |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |