Metamath Proof Explorer


Theorem sqge0d

Description: The square of a real is nonnegative, deduction form. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis sqge0d.1
|- ( ph -> A e. RR )
Assertion sqge0d
|- ( ph -> 0 <_ ( A ^ 2 ) )

Proof

Step Hyp Ref Expression
1 sqge0d.1
 |-  ( ph -> A e. RR )
2 sqge0
 |-  ( A e. RR -> 0 <_ ( A ^ 2 ) )
3 1 2 syl
 |-  ( ph -> 0 <_ ( A ^ 2 ) )