Metamath Proof Explorer


Theorem sqge0i

Description: A square of a real is nonnegative. (Contributed by NM, 3-Aug-1999)

Ref Expression
Hypothesis resqcl.1
|- A e. RR
Assertion sqge0i
|- 0 <_ ( A ^ 2 )

Proof

Step Hyp Ref Expression
1 resqcl.1
 |-  A e. RR
2 1 msqge0i
 |-  0 <_ ( A x. A )
3 1 recni
 |-  A e. CC
4 3 sqvali
 |-  ( A ^ 2 ) = ( A x. A )
5 2 4 breqtrri
 |-  0 <_ ( A ^ 2 )