Metamath Proof Explorer


Theorem sqgt0d

Description: The square of a nonzero real is positive. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1
|- ( ph -> A e. RR )
sqgt0d.2
|- ( ph -> A =/= 0 )
Assertion sqgt0d
|- ( ph -> 0 < ( A ^ 2 ) )

Proof

Step Hyp Ref Expression
1 resqcld.1
 |-  ( ph -> A e. RR )
2 sqgt0d.2
 |-  ( ph -> A =/= 0 )
3 sqgt0
 |-  ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A ^ 2 ) )
4 1 2 3 syl2anc
 |-  ( ph -> 0 < ( A ^ 2 ) )