| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0r |  |-  0R e. R. | 
						
							| 2 |  | ltsosr |  |-   | 
						
							| 3 |  | sotrieq |  |-  ( (  ( A = 0R <-> -. ( A  | 
						
							| 4 | 2 3 | mpan |  |-  ( ( A e. R. /\ 0R e. R. ) -> ( A = 0R <-> -. ( A  | 
						
							| 5 | 1 4 | mpan2 |  |-  ( A e. R. -> ( A = 0R <-> -. ( A  | 
						
							| 6 | 5 | necon2abid |  |-  ( A e. R. -> ( ( A  A =/= 0R ) ) | 
						
							| 7 |  | m1r |  |-  -1R e. R. | 
						
							| 8 |  | mulclsr |  |-  ( ( A e. R. /\ -1R e. R. ) -> ( A .R -1R ) e. R. ) | 
						
							| 9 | 7 8 | mpan2 |  |-  ( A e. R. -> ( A .R -1R ) e. R. ) | 
						
							| 10 |  | ltasr |  |-  ( ( A .R -1R ) e. R. -> ( A  ( ( A .R -1R ) +R A )  | 
						
							| 11 | 9 10 | syl |  |-  ( A e. R. -> ( A  ( ( A .R -1R ) +R A )  | 
						
							| 12 |  | addcomsr |  |-  ( ( A .R -1R ) +R A ) = ( A +R ( A .R -1R ) ) | 
						
							| 13 |  | pn0sr |  |-  ( A e. R. -> ( A +R ( A .R -1R ) ) = 0R ) | 
						
							| 14 | 12 13 | eqtrid |  |-  ( A e. R. -> ( ( A .R -1R ) +R A ) = 0R ) | 
						
							| 15 |  | 0idsr |  |-  ( ( A .R -1R ) e. R. -> ( ( A .R -1R ) +R 0R ) = ( A .R -1R ) ) | 
						
							| 16 | 9 15 | syl |  |-  ( A e. R. -> ( ( A .R -1R ) +R 0R ) = ( A .R -1R ) ) | 
						
							| 17 | 14 16 | breq12d |  |-  ( A e. R. -> ( ( ( A .R -1R ) +R A )  0R  | 
						
							| 18 | 11 17 | bitrd |  |-  ( A e. R. -> ( A  0R  | 
						
							| 19 |  | mulgt0sr |  |-  ( ( 0R  0R  | 
						
							| 20 | 19 | anidms |  |-  ( 0R  0R  | 
						
							| 21 | 18 20 | biimtrdi |  |-  ( A e. R. -> ( A  0R  | 
						
							| 22 |  | mulcomsr |  |-  ( -1R .R A ) = ( A .R -1R ) | 
						
							| 23 | 22 | oveq1i |  |-  ( ( -1R .R A ) .R -1R ) = ( ( A .R -1R ) .R -1R ) | 
						
							| 24 |  | mulasssr |  |-  ( ( -1R .R A ) .R -1R ) = ( -1R .R ( A .R -1R ) ) | 
						
							| 25 |  | mulasssr |  |-  ( ( A .R -1R ) .R -1R ) = ( A .R ( -1R .R -1R ) ) | 
						
							| 26 | 23 24 25 | 3eqtr3i |  |-  ( -1R .R ( A .R -1R ) ) = ( A .R ( -1R .R -1R ) ) | 
						
							| 27 |  | m1m1sr |  |-  ( -1R .R -1R ) = 1R | 
						
							| 28 | 27 | oveq2i |  |-  ( A .R ( -1R .R -1R ) ) = ( A .R 1R ) | 
						
							| 29 | 26 28 | eqtri |  |-  ( -1R .R ( A .R -1R ) ) = ( A .R 1R ) | 
						
							| 30 | 29 | oveq2i |  |-  ( A .R ( -1R .R ( A .R -1R ) ) ) = ( A .R ( A .R 1R ) ) | 
						
							| 31 |  | mulasssr |  |-  ( ( A .R -1R ) .R ( A .R -1R ) ) = ( A .R ( -1R .R ( A .R -1R ) ) ) | 
						
							| 32 |  | mulasssr |  |-  ( ( A .R A ) .R 1R ) = ( A .R ( A .R 1R ) ) | 
						
							| 33 | 30 31 32 | 3eqtr4i |  |-  ( ( A .R -1R ) .R ( A .R -1R ) ) = ( ( A .R A ) .R 1R ) | 
						
							| 34 |  | mulclsr |  |-  ( ( A e. R. /\ A e. R. ) -> ( A .R A ) e. R. ) | 
						
							| 35 |  | 1idsr |  |-  ( ( A .R A ) e. R. -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( A e. R. /\ A e. R. ) -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) | 
						
							| 37 | 36 | anidms |  |-  ( A e. R. -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) | 
						
							| 38 | 33 37 | eqtrid |  |-  ( A e. R. -> ( ( A .R -1R ) .R ( A .R -1R ) ) = ( A .R A ) ) | 
						
							| 39 | 38 | breq2d |  |-  ( A e. R. -> ( 0R  0R  | 
						
							| 40 | 21 39 | sylibd |  |-  ( A e. R. -> ( A  0R  | 
						
							| 41 |  | mulgt0sr |  |-  ( ( 0R  0R  | 
						
							| 42 | 41 | anidms |  |-  ( 0R  0R  | 
						
							| 43 | 42 | a1i |  |-  ( A e. R. -> ( 0R  0R  | 
						
							| 44 | 40 43 | jaod |  |-  ( A e. R. -> ( ( A  0R  | 
						
							| 45 | 6 44 | sylbird |  |-  ( A e. R. -> ( A =/= 0R -> 0R  | 
						
							| 46 | 45 | imp |  |-  ( ( A e. R. /\ A =/= 0R ) -> 0R  |