Metamath Proof Explorer


Theorem sqmuld

Description: Distribution of square over multiplication. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
mulexpd.2
|- ( ph -> B e. CC )
Assertion sqmuld
|- ( ph -> ( ( A x. B ) ^ 2 ) = ( ( A ^ 2 ) x. ( B ^ 2 ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 mulexpd.2
 |-  ( ph -> B e. CC )
3 sqmul
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 2 ) = ( ( A ^ 2 ) x. ( B ^ 2 ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( ( A x. B ) ^ 2 ) = ( ( A ^ 2 ) x. ( B ^ 2 ) ) )