Metamath Proof Explorer


Theorem sqmuli

Description: Distribution of square over multiplication. (Contributed by NM, 3-Sep-1999)

Ref Expression
Hypotheses sqval.1
|- A e. CC
sqmul.2
|- B e. CC
Assertion sqmuli
|- ( ( A x. B ) ^ 2 ) = ( ( A ^ 2 ) x. ( B ^ 2 ) )

Proof

Step Hyp Ref Expression
1 sqval.1
 |-  A e. CC
2 sqmul.2
 |-  B e. CC
3 sqmul
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 2 ) = ( ( A ^ 2 ) x. ( B ^ 2 ) ) )
4 1 2 3 mp2an
 |-  ( ( A x. B ) ^ 2 ) = ( ( A ^ 2 ) x. ( B ^ 2 ) )