Description: A complex number is nonzero if and only if its square is nonzero. (Contributed by NM, 11-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqne0 | |- ( A e. CC -> ( ( A ^ 2 ) =/= 0 <-> A =/= 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqeq0 | |- ( A e. CC -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
|
| 2 | 1 | necon3bid | |- ( A e. CC -> ( ( A ^ 2 ) =/= 0 <-> A =/= 0 ) ) |