Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
2 |
1
|
adantr |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> A e. RR ) |
3 |
|
absresq |
|- ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
4 |
2 3
|
syl |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
5 |
2
|
recnd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> A e. CC ) |
6 |
5
|
abscld |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. RR ) |
7 |
6
|
recnd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. CC ) |
8 |
7
|
sqvald |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
9 |
4 8
|
eqtr3d |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
10 |
|
simpr |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) e. Prime ) |
11 |
9 10
|
eqeltrrd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
12 |
|
nn0abscl |
|- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |
13 |
12
|
adantr |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. NN0 ) |
14 |
13
|
nn0zd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. ZZ ) |
15 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
16 |
|
prmuz2 |
|- ( ( A ^ 2 ) e. Prime -> ( A ^ 2 ) e. ( ZZ>= ` 2 ) ) |
17 |
16
|
adantl |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) e. ( ZZ>= ` 2 ) ) |
18 |
|
eluz2gt1 |
|- ( ( A ^ 2 ) e. ( ZZ>= ` 2 ) -> 1 < ( A ^ 2 ) ) |
19 |
17 18
|
syl |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( A ^ 2 ) ) |
20 |
19 4
|
breqtrrd |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( ( abs ` A ) ^ 2 ) ) |
21 |
15 20
|
eqbrtrid |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) |
22 |
5
|
absge0d |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 0 <_ ( abs ` A ) ) |
23 |
|
1re |
|- 1 e. RR |
24 |
|
0le1 |
|- 0 <_ 1 |
25 |
|
lt2sq |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
26 |
23 24 25
|
mpanl12 |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
27 |
6 22 26
|
syl2anc |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) |
28 |
21 27
|
mpbird |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( abs ` A ) ) |
29 |
|
eluz2b1 |
|- ( ( abs ` A ) e. ( ZZ>= ` 2 ) <-> ( ( abs ` A ) e. ZZ /\ 1 < ( abs ` A ) ) ) |
30 |
14 28 29
|
sylanbrc |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. ( ZZ>= ` 2 ) ) |
31 |
|
nprm |
|- ( ( ( abs ` A ) e. ( ZZ>= ` 2 ) /\ ( abs ` A ) e. ( ZZ>= ` 2 ) ) -> -. ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
32 |
30 30 31
|
syl2anc |
|- ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> -. ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) |
33 |
11 32
|
pm2.65da |
|- ( A e. ZZ -> -. ( A ^ 2 ) e. Prime ) |