| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> A e. RR ) | 
						
							| 3 |  | absresq |  |-  ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 5 | 2 | recnd |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> A e. CC ) | 
						
							| 6 | 5 | abscld |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. CC ) | 
						
							| 8 | 7 | sqvald |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) | 
						
							| 9 | 4 8 | eqtr3d |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) e. Prime ) | 
						
							| 11 | 9 10 | eqeltrrd |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) | 
						
							| 12 |  | nn0abscl |  |-  ( A e. ZZ -> ( abs ` A ) e. NN0 ) | 
						
							| 13 | 12 | adantr |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. NN0 ) | 
						
							| 14 | 13 | nn0zd |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. ZZ ) | 
						
							| 15 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 16 |  | prmuz2 |  |-  ( ( A ^ 2 ) e. Prime -> ( A ^ 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( A ^ 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 18 |  | eluz2gt1 |  |-  ( ( A ^ 2 ) e. ( ZZ>= ` 2 ) -> 1 < ( A ^ 2 ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( A ^ 2 ) ) | 
						
							| 20 | 19 4 | breqtrrd |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( ( abs ` A ) ^ 2 ) ) | 
						
							| 21 | 15 20 | eqbrtrid |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) | 
						
							| 22 | 5 | absge0d |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 0 <_ ( abs ` A ) ) | 
						
							| 23 |  | 1re |  |-  1 e. RR | 
						
							| 24 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 25 |  | lt2sq |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) | 
						
							| 26 | 23 24 25 | mpanl12 |  |-  ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) | 
						
							| 27 | 6 22 26 | syl2anc |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( 1 < ( abs ` A ) <-> ( 1 ^ 2 ) < ( ( abs ` A ) ^ 2 ) ) ) | 
						
							| 28 | 21 27 | mpbird |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> 1 < ( abs ` A ) ) | 
						
							| 29 |  | eluz2b1 |  |-  ( ( abs ` A ) e. ( ZZ>= ` 2 ) <-> ( ( abs ` A ) e. ZZ /\ 1 < ( abs ` A ) ) ) | 
						
							| 30 | 14 28 29 | sylanbrc |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> ( abs ` A ) e. ( ZZ>= ` 2 ) ) | 
						
							| 31 |  | nprm |  |-  ( ( ( abs ` A ) e. ( ZZ>= ` 2 ) /\ ( abs ` A ) e. ( ZZ>= ` 2 ) ) -> -. ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) | 
						
							| 32 | 30 30 31 | syl2anc |  |-  ( ( A e. ZZ /\ ( A ^ 2 ) e. Prime ) -> -. ( ( abs ` A ) x. ( abs ` A ) ) e. Prime ) | 
						
							| 33 | 11 32 | pm2.65da |  |-  ( A e. ZZ -> -. ( A ^ 2 ) e. Prime ) |