Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
|- ( N e. ZZ -> ( -. 2 || N <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = N ) ) |
2 |
1
|
biimpa |
|- ( ( N e. ZZ /\ -. 2 || N ) -> E. k e. ZZ ( ( 2 x. k ) + 1 ) = N ) |
3 |
|
eqcom |
|- ( ( ( 2 x. k ) + 1 ) = N <-> N = ( ( 2 x. k ) + 1 ) ) |
4 |
|
sqoddm1div8 |
|- ( ( k e. ZZ /\ N = ( ( 2 x. k ) + 1 ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( k x. ( k + 1 ) ) / 2 ) ) |
5 |
4
|
adantll |
|- ( ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) /\ N = ( ( 2 x. k ) + 1 ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( k x. ( k + 1 ) ) / 2 ) ) |
6 |
|
mulsucdiv2z |
|- ( k e. ZZ -> ( ( k x. ( k + 1 ) ) / 2 ) e. ZZ ) |
7 |
6
|
ad2antlr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) /\ N = ( ( 2 x. k ) + 1 ) ) -> ( ( k x. ( k + 1 ) ) / 2 ) e. ZZ ) |
8 |
5 7
|
eqeltrd |
|- ( ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) /\ N = ( ( 2 x. k ) + 1 ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) |
9 |
8
|
ex |
|- ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) -> ( N = ( ( 2 x. k ) + 1 ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) ) |
10 |
3 9
|
syl5bi |
|- ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) -> ( ( ( 2 x. k ) + 1 ) = N -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) ) |
11 |
10
|
rexlimdva |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( E. k e. ZZ ( ( 2 x. k ) + 1 ) = N -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) ) |
12 |
2 11
|
mpd |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) |