Description: Square of reciprocal is reciprocal of square. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | |- ( ph -> A e. CC ) |
|
| sqrecd.1 | |- ( ph -> A =/= 0 ) |
||
| Assertion | sqrecd | |- ( ph -> ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | |- ( ph -> A e. CC ) |
|
| 2 | sqrecd.1 | |- ( ph -> A =/= 0 ) |
|
| 3 | 2z | |- 2 e. ZZ |
|
| 4 | 3 | a1i | |- ( ph -> 2 e. ZZ ) |
| 5 | exprec | |- ( ( A e. CC /\ A =/= 0 /\ 2 e. ZZ ) -> ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) ) |
|
| 6 | 1 2 4 5 | syl3anc | |- ( ph -> ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) ) |