Metamath Proof Explorer


Theorem sqrecd

Description: Square of reciprocal. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
sqrecd.1
|- ( ph -> A =/= 0 )
Assertion sqrecd
|- ( ph -> ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 sqrecd.1
 |-  ( ph -> A =/= 0 )
3 2z
 |-  2 e. ZZ
4 3 a1i
 |-  ( ph -> 2 e. ZZ )
5 exprec
 |-  ( ( A e. CC /\ A =/= 0 /\ 2 e. ZZ ) -> ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) )
6 1 2 4 5 syl3anc
 |-  ( ph -> ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) )