| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqval.1 |  |-  A e. CC | 
						
							| 2 |  | sqreci.1 |  |-  A =/= 0 | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 | 3 1 3 1 2 2 | divmuldivi |  |-  ( ( 1 / A ) x. ( 1 / A ) ) = ( ( 1 x. 1 ) / ( A x. A ) ) | 
						
							| 5 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 6 | 5 | oveq1i |  |-  ( ( 1 x. 1 ) / ( A x. A ) ) = ( 1 / ( A x. A ) ) | 
						
							| 7 | 4 6 | eqtri |  |-  ( ( 1 / A ) x. ( 1 / A ) ) = ( 1 / ( A x. A ) ) | 
						
							| 8 | 1 2 | reccli |  |-  ( 1 / A ) e. CC | 
						
							| 9 | 8 | sqvali |  |-  ( ( 1 / A ) ^ 2 ) = ( ( 1 / A ) x. ( 1 / A ) ) | 
						
							| 10 | 1 | sqvali |  |-  ( A ^ 2 ) = ( A x. A ) | 
						
							| 11 | 10 | oveq2i |  |-  ( 1 / ( A ^ 2 ) ) = ( 1 / ( A x. A ) ) | 
						
							| 12 | 7 9 11 | 3eqtr4i |  |-  ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) |