| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abscl |  |-  ( A e. CC -> ( abs ` A ) e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( A e. CC -> ( abs ` A ) e. CC ) | 
						
							| 3 |  | subneg |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) | 
						
							| 4 | 2 3 | mpancom |  |-  ( A e. CC -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) | 
						
							| 6 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 7 | 2 6 | subeq0ad |  |-  ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) | 
						
							| 8 | 5 7 | bitr3d |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) | 
						
							| 9 |  | ax-icn |  |-  _i e. CC | 
						
							| 10 |  | absge0 |  |-  ( A e. CC -> 0 <_ ( abs ` A ) ) | 
						
							| 11 | 1 10 | jca |  |-  ( A e. CC -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) | 
						
							| 12 |  | eleq1 |  |-  ( ( abs ` A ) = -u A -> ( ( abs ` A ) e. RR <-> -u A e. RR ) ) | 
						
							| 13 |  | breq2 |  |-  ( ( abs ` A ) = -u A -> ( 0 <_ ( abs ` A ) <-> 0 <_ -u A ) ) | 
						
							| 14 | 12 13 | anbi12d |  |-  ( ( abs ` A ) = -u A -> ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) <-> ( -u A e. RR /\ 0 <_ -u A ) ) ) | 
						
							| 15 | 11 14 | imbitrid |  |-  ( ( abs ` A ) = -u A -> ( A e. CC -> ( -u A e. RR /\ 0 <_ -u A ) ) ) | 
						
							| 16 | 15 | impcom |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( -u A e. RR /\ 0 <_ -u A ) ) | 
						
							| 17 |  | resqrtcl |  |-  ( ( -u A e. RR /\ 0 <_ -u A ) -> ( sqrt ` -u A ) e. RR ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( sqrt ` -u A ) e. RR ) | 
						
							| 19 | 18 | recnd |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( sqrt ` -u A ) e. CC ) | 
						
							| 20 |  | mulcl |  |-  ( ( _i e. CC /\ ( sqrt ` -u A ) e. CC ) -> ( _i x. ( sqrt ` -u A ) ) e. CC ) | 
						
							| 21 | 9 19 20 | sylancr |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( _i x. ( sqrt ` -u A ) ) e. CC ) | 
						
							| 22 |  | sqrtneglem |  |-  ( ( -u A e. RR /\ 0 <_ -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) | 
						
							| 23 | 16 22 | syl |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) | 
						
							| 24 |  | negneg |  |-  ( A e. CC -> -u -u A = A ) | 
						
							| 25 | 24 | adantr |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> -u -u A = A ) | 
						
							| 26 | 25 | eqeq2d |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A <-> ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A ) ) | 
						
							| 27 | 26 | 3anbi1d |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) <-> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) ) | 
						
							| 28 | 23 27 | mpbid |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) | 
						
							| 29 |  | oveq1 |  |-  ( x = ( _i x. ( sqrt ` -u A ) ) -> ( x ^ 2 ) = ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) ) | 
						
							| 30 | 29 | eqeq1d |  |-  ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( x ^ 2 ) = A <-> ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A ) ) | 
						
							| 31 |  | fveq2 |  |-  ( x = ( _i x. ( sqrt ` -u A ) ) -> ( Re ` x ) = ( Re ` ( _i x. ( sqrt ` -u A ) ) ) ) | 
						
							| 32 | 31 | breq2d |  |-  ( x = ( _i x. ( sqrt ` -u A ) ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) ) ) | 
						
							| 33 |  | oveq2 |  |-  ( x = ( _i x. ( sqrt ` -u A ) ) -> ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` -u A ) ) ) ) | 
						
							| 34 |  | neleq1 |  |-  ( ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` -u A ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) | 
						
							| 36 | 30 32 35 | 3anbi123d |  |-  ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) ) | 
						
							| 37 | 36 | rspcev |  |-  ( ( ( _i x. ( sqrt ` -u A ) ) e. CC /\ ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 38 | 21 28 37 | syl2anc |  |-  ( ( A e. CC /\ ( abs ` A ) = -u A ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 39 | 38 | ex |  |-  ( A e. CC -> ( ( abs ` A ) = -u A -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) | 
						
							| 40 | 8 39 | sylbid |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) | 
						
							| 41 |  | resqrtcl |  |-  ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( sqrt ` ( abs ` A ) ) e. RR ) | 
						
							| 42 | 1 10 41 | syl2anc |  |-  ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. RR ) | 
						
							| 43 | 42 | recnd |  |-  ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. CC ) | 
						
							| 44 | 43 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. CC ) | 
						
							| 45 |  | addcl |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) + A ) e. CC ) | 
						
							| 46 | 2 45 | mpancom |  |-  ( A e. CC -> ( ( abs ` A ) + A ) e. CC ) | 
						
							| 47 | 46 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) | 
						
							| 48 |  | abscl |  |-  ( ( ( abs ` A ) + A ) e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) | 
						
							| 49 | 46 48 | syl |  |-  ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) | 
						
							| 50 | 49 | recnd |  |-  ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) | 
						
							| 51 | 50 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) | 
						
							| 52 | 46 | abs00ad |  |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) | 
						
							| 53 | 52 | necon3bid |  |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) =/= 0 <-> ( ( abs ` A ) + A ) =/= 0 ) ) | 
						
							| 54 | 53 | biimpar |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) | 
						
							| 55 | 47 51 54 | divcld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) | 
						
							| 56 | 44 55 | mulcld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) | 
						
							| 57 |  | eqid |  |-  ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 58 | 57 | sqreulem |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) | 
						
							| 59 |  | oveq1 |  |-  ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( x ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) ) | 
						
							| 60 | 59 | eqeq1d |  |-  ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( x ^ 2 ) = A <-> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A ) ) | 
						
							| 61 |  | fveq2 |  |-  ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( Re ` x ) = ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) | 
						
							| 62 | 61 | breq2d |  |-  ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) ) | 
						
							| 63 |  | oveq2 |  |-  ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( _i x. x ) = ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) | 
						
							| 64 |  | neleq1 |  |-  ( ( _i x. x ) = ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) | 
						
							| 65 | 63 64 | syl |  |-  ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) | 
						
							| 66 | 60 62 65 | 3anbi123d |  |-  ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) ) | 
						
							| 67 | 66 | rspcev |  |-  ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC /\ ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 68 | 56 58 67 | syl2anc |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 69 | 68 | ex |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) | 
						
							| 70 | 40 69 | pm2.61dne |  |-  ( A e. CC -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 71 |  | sqrmo |  |-  ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 72 |  | reu5 |  |-  ( E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) | 
						
							| 73 | 70 71 72 | sylanbrc |  |-  ( A e. CC -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |