Step |
Hyp |
Ref |
Expression |
1 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
2 |
1
|
recnd |
|- ( A e. CC -> ( abs ` A ) e. CC ) |
3 |
|
subneg |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
4 |
2 3
|
mpancom |
|- ( A e. CC -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
5 |
4
|
eqeq1d |
|- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
6 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
7 |
2 6
|
subeq0ad |
|- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) |
8 |
5 7
|
bitr3d |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) |
9 |
|
ax-icn |
|- _i e. CC |
10 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
11 |
1 10
|
jca |
|- ( A e. CC -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
12 |
|
eleq1 |
|- ( ( abs ` A ) = -u A -> ( ( abs ` A ) e. RR <-> -u A e. RR ) ) |
13 |
|
breq2 |
|- ( ( abs ` A ) = -u A -> ( 0 <_ ( abs ` A ) <-> 0 <_ -u A ) ) |
14 |
12 13
|
anbi12d |
|- ( ( abs ` A ) = -u A -> ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) <-> ( -u A e. RR /\ 0 <_ -u A ) ) ) |
15 |
11 14
|
syl5ib |
|- ( ( abs ` A ) = -u A -> ( A e. CC -> ( -u A e. RR /\ 0 <_ -u A ) ) ) |
16 |
15
|
impcom |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( -u A e. RR /\ 0 <_ -u A ) ) |
17 |
|
resqrtcl |
|- ( ( -u A e. RR /\ 0 <_ -u A ) -> ( sqrt ` -u A ) e. RR ) |
18 |
16 17
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( sqrt ` -u A ) e. RR ) |
19 |
18
|
recnd |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( sqrt ` -u A ) e. CC ) |
20 |
|
mulcl |
|- ( ( _i e. CC /\ ( sqrt ` -u A ) e. CC ) -> ( _i x. ( sqrt ` -u A ) ) e. CC ) |
21 |
9 19 20
|
sylancr |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( _i x. ( sqrt ` -u A ) ) e. CC ) |
22 |
|
sqrtneglem |
|- ( ( -u A e. RR /\ 0 <_ -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
23 |
16 22
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
24 |
|
negneg |
|- ( A e. CC -> -u -u A = A ) |
25 |
24
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> -u -u A = A ) |
26 |
25
|
eqeq2d |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A <-> ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A ) ) |
27 |
26
|
3anbi1d |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) <-> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) ) |
28 |
23 27
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
29 |
|
oveq1 |
|- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( x ^ 2 ) = ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) ) |
30 |
29
|
eqeq1d |
|- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( x ^ 2 ) = A <-> ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A ) ) |
31 |
|
fveq2 |
|- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( Re ` x ) = ( Re ` ( _i x. ( sqrt ` -u A ) ) ) ) |
32 |
31
|
breq2d |
|- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) ) ) |
33 |
|
oveq2 |
|- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` -u A ) ) ) ) |
34 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` -u A ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
35 |
33 34
|
syl |
|- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
36 |
30 32 35
|
3anbi123d |
|- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) ) |
37 |
36
|
rspcev |
|- ( ( ( _i x. ( sqrt ` -u A ) ) e. CC /\ ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
38 |
21 28 37
|
syl2anc |
|- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
39 |
38
|
ex |
|- ( A e. CC -> ( ( abs ` A ) = -u A -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
40 |
8 39
|
sylbid |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
41 |
|
resqrtcl |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( sqrt ` ( abs ` A ) ) e. RR ) |
42 |
1 10 41
|
syl2anc |
|- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. RR ) |
43 |
42
|
recnd |
|- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. CC ) |
44 |
43
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. CC ) |
45 |
|
addcl |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) + A ) e. CC ) |
46 |
2 45
|
mpancom |
|- ( A e. CC -> ( ( abs ` A ) + A ) e. CC ) |
47 |
46
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) |
48 |
|
abscl |
|- ( ( ( abs ` A ) + A ) e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
49 |
46 48
|
syl |
|- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
50 |
49
|
recnd |
|- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
51 |
50
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
52 |
46
|
abs00ad |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
53 |
52
|
necon3bid |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) =/= 0 <-> ( ( abs ` A ) + A ) =/= 0 ) ) |
54 |
53
|
biimpar |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) |
55 |
47 51 54
|
divcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) |
56 |
44 55
|
mulcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) |
57 |
|
eqid |
|- ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
58 |
57
|
sqreulem |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
59 |
|
oveq1 |
|- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( x ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) ) |
60 |
59
|
eqeq1d |
|- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( x ^ 2 ) = A <-> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A ) ) |
61 |
|
fveq2 |
|- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( Re ` x ) = ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
62 |
61
|
breq2d |
|- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) ) |
63 |
|
oveq2 |
|- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( _i x. x ) = ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
64 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
65 |
63 64
|
syl |
|- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
66 |
60 62 65
|
3anbi123d |
|- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) ) |
67 |
66
|
rspcev |
|- ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC /\ ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
68 |
56 58 67
|
syl2anc |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
69 |
68
|
ex |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
70 |
40 69
|
pm2.61dne |
|- ( A e. CC -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
71 |
|
sqrmo |
|- ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
72 |
|
reu5 |
|- ( E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
73 |
70 71 72
|
sylanbrc |
|- ( A e. CC -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |