Step |
Hyp |
Ref |
Expression |
1 |
|
sqrteulem.1 |
|- B = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
2 |
1
|
oveq1i |
|- ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) |
3 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
4 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
5 |
|
resqrtcl |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( sqrt ` ( abs ` A ) ) e. RR ) |
6 |
3 4 5
|
syl2anc |
|- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. RR ) |
7 |
6
|
recnd |
|- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. CC ) |
8 |
7
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. CC ) |
9 |
3
|
recnd |
|- ( A e. CC -> ( abs ` A ) e. CC ) |
10 |
|
addcl |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) + A ) e. CC ) |
11 |
9 10
|
mpancom |
|- ( A e. CC -> ( ( abs ` A ) + A ) e. CC ) |
12 |
11
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) |
13 |
|
abscl |
|- ( ( ( abs ` A ) + A ) e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
14 |
11 13
|
syl |
|- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
15 |
14
|
recnd |
|- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
16 |
15
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
17 |
11
|
abs00ad |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
18 |
17
|
necon3bid |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) =/= 0 <-> ( ( abs ` A ) + A ) =/= 0 ) ) |
19 |
18
|
biimpar |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) |
20 |
12 16 19
|
divcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) |
21 |
8 20
|
sqmuld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) ) |
22 |
2 21
|
eqtrid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) ) |
23 |
3
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. RR ) |
24 |
4
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` A ) ) |
25 |
|
resqrtth |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) ) |
26 |
23 24 25
|
syl2anc |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) ) |
27 |
12 16 19
|
sqdivd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) ) |
28 |
|
absvalsq |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
29 |
|
2cn |
|- 2 e. CC |
30 |
|
mulass |
|- ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
31 |
29 30
|
mp3an1 |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
32 |
9 31
|
mpancom |
|- ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
33 |
|
mulcl |
|- ( ( 2 e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( abs ` A ) ) e. CC ) |
34 |
29 9 33
|
sylancr |
|- ( A e. CC -> ( 2 x. ( abs ` A ) ) e. CC ) |
35 |
|
mulcom |
|- ( ( ( 2 x. ( abs ` A ) ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
36 |
34 35
|
mpancom |
|- ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
37 |
32 36
|
eqtr3d |
|- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. A ) ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
38 |
28 37
|
oveq12d |
|- ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
39 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
40 |
|
adddi |
|- ( ( A e. CC /\ ( * ` A ) e. CC /\ ( 2 x. ( abs ` A ) ) e. CC ) -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
41 |
39 34 40
|
mpd3an23 |
|- ( A e. CC -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
42 |
38 41
|
eqtr4d |
|- ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) ) |
43 |
|
sqval |
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
44 |
42 43
|
oveq12d |
|- ( A e. CC -> ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) ) |
45 |
|
binom2 |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) ) |
46 |
9 45
|
mpancom |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) ) |
47 |
|
id |
|- ( A e. CC -> A e. CC ) |
48 |
39 34
|
addcld |
|- ( A e. CC -> ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC ) |
49 |
47 48 47
|
adddid |
|- ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) ) |
50 |
44 46 49
|
3eqtr4d |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) |
51 |
9 34
|
mulcld |
|- ( A e. CC -> ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) e. CC ) |
52 |
9 39
|
mulcld |
|- ( A e. CC -> ( ( abs ` A ) x. ( * ` A ) ) e. CC ) |
53 |
51 52
|
addcomd |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) ) |
54 |
9 9
|
mulcld |
|- ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) e. CC ) |
55 |
54
|
2timesd |
|- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) ) |
56 |
|
mul12 |
|- ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
57 |
29 9 9 56
|
mp3an2i |
|- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
58 |
9
|
sqvald |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
59 |
|
mulcom |
|- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
60 |
39 59
|
mpdan |
|- ( A e. CC -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
61 |
28 58 60
|
3eqtr3d |
|- ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) = ( ( * ` A ) x. A ) ) |
62 |
61
|
oveq2d |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) ) |
63 |
55 57 62
|
3eqtr3rd |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
64 |
63
|
oveq1d |
|- ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) ) |
65 |
9 39 34
|
adddid |
|- ( A e. CC -> ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) ) |
66 |
53 64 65
|
3eqtr4d |
|- ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) ) |
67 |
66
|
oveq1d |
|- ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) ) |
68 |
|
cjadd |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) ) |
69 |
9 68
|
mpancom |
|- ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) ) |
70 |
3
|
cjred |
|- ( A e. CC -> ( * ` ( abs ` A ) ) = ( abs ` A ) ) |
71 |
70
|
oveq1d |
|- ( A e. CC -> ( ( * ` ( abs ` A ) ) + ( * ` A ) ) = ( ( abs ` A ) + ( * ` A ) ) ) |
72 |
69 71
|
eqtrd |
|- ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( abs ` A ) + ( * ` A ) ) ) |
73 |
72
|
oveq2d |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) ) |
74 |
9 47 9 39
|
muladdd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
75 |
73 74
|
eqtrd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
76 |
|
absvalsq |
|- ( ( ( abs ` A ) + A ) e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) ) |
77 |
11 76
|
syl |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) ) |
78 |
|
mulcl |
|- ( ( ( * ` A ) e. CC /\ A e. CC ) -> ( ( * ` A ) x. A ) e. CC ) |
79 |
39 78
|
mpancom |
|- ( A e. CC -> ( ( * ` A ) x. A ) e. CC ) |
80 |
54 79
|
addcld |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) e. CC ) |
81 |
|
mulcl |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) x. A ) e. CC ) |
82 |
9 81
|
mpancom |
|- ( A e. CC -> ( ( abs ` A ) x. A ) e. CC ) |
83 |
80 52 82
|
addassd |
|- ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
84 |
75 77 83
|
3eqtr4d |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) ) |
85 |
9 48 47
|
adddid |
|- ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) ) |
86 |
67 84 85
|
3eqtr4d |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) |
87 |
50 86
|
oveq12d |
|- ( A e. CC -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
88 |
87
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
89 |
27 88
|
eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
90 |
26 89
|
oveq12d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) ) |
91 |
|
addcl |
|- ( ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC /\ A e. CC ) -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) |
92 |
48 91
|
mpancom |
|- ( A e. CC -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) |
93 |
9 47 92
|
mul12d |
|- ( A e. CC -> ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
94 |
93
|
oveq1d |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
95 |
94
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
96 |
9
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. CC ) |
97 |
|
mulcl |
|- ( ( A e. CC /\ ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
98 |
92 97
|
mpdan |
|- ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
99 |
98
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
100 |
9 92
|
mulcld |
|- ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
101 |
100
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
102 |
|
sqeq0 |
|- ( ( abs ` ( ( abs ` A ) + A ) ) e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) ) |
103 |
15 102
|
syl |
|- ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) ) |
104 |
86
|
eqeq1d |
|- ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) ) |
105 |
103 104 17
|
3bitr3rd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) ) |
106 |
105
|
necon3bid |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) ) |
107 |
106
|
biimpa |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) |
108 |
96 99 101 107
|
divassd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) ) |
109 |
|
simpl |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> A e. CC ) |
110 |
109 101 107
|
divcan4d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = A ) |
111 |
95 108 110
|
3eqtr3d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) = A ) |
112 |
22 90 111
|
3eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = A ) |
113 |
6
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. RR ) |
114 |
11
|
addcjd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) = ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
115 |
|
2re |
|- 2 e. RR |
116 |
11
|
recld |
|- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) e. RR ) |
117 |
|
remulcl |
|- ( ( 2 e. RR /\ ( Re ` ( ( abs ` A ) + A ) ) e. RR ) -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR ) |
118 |
115 116 117
|
sylancr |
|- ( A e. CC -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR ) |
119 |
114 118
|
eqeltrd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR ) |
120 |
119
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR ) |
121 |
14
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
122 |
120 121 19
|
redivcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. RR ) |
123 |
113 122
|
remulcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR ) |
124 |
|
sqrtge0 |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
125 |
3 4 124
|
syl2anc |
|- ( A e. CC -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
126 |
125
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
127 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
128 |
|
releabs |
|- ( -u A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) |
129 |
127 128
|
syl |
|- ( A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) |
130 |
|
abscl |
|- ( -u A e. CC -> ( abs ` -u A ) e. RR ) |
131 |
127 130
|
syl |
|- ( A e. CC -> ( abs ` -u A ) e. RR ) |
132 |
127
|
recld |
|- ( A e. CC -> ( Re ` -u A ) e. RR ) |
133 |
131 132
|
subge0d |
|- ( A e. CC -> ( 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) <-> ( Re ` -u A ) <_ ( abs ` -u A ) ) ) |
134 |
129 133
|
mpbird |
|- ( A e. CC -> 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
135 |
|
readd |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) ) |
136 |
9 135
|
mpancom |
|- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) ) |
137 |
3
|
rered |
|- ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` A ) ) |
138 |
|
absneg |
|- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |
139 |
137 138
|
eqtr4d |
|- ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` -u A ) ) |
140 |
|
negneg |
|- ( A e. CC -> -u -u A = A ) |
141 |
140
|
fveq2d |
|- ( A e. CC -> ( Re ` -u -u A ) = ( Re ` A ) ) |
142 |
127
|
renegd |
|- ( A e. CC -> ( Re ` -u -u A ) = -u ( Re ` -u A ) ) |
143 |
141 142
|
eqtr3d |
|- ( A e. CC -> ( Re ` A ) = -u ( Re ` -u A ) ) |
144 |
139 143
|
oveq12d |
|- ( A e. CC -> ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) = ( ( abs ` -u A ) + -u ( Re ` -u A ) ) ) |
145 |
131
|
recnd |
|- ( A e. CC -> ( abs ` -u A ) e. CC ) |
146 |
132
|
recnd |
|- ( A e. CC -> ( Re ` -u A ) e. CC ) |
147 |
145 146
|
negsubd |
|- ( A e. CC -> ( ( abs ` -u A ) + -u ( Re ` -u A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
148 |
136 144 147
|
3eqtrd |
|- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
149 |
134 148
|
breqtrrd |
|- ( A e. CC -> 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) |
150 |
|
0le2 |
|- 0 <_ 2 |
151 |
|
mulge0 |
|- ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
152 |
115 150 151
|
mpanl12 |
|- ( ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
153 |
116 149 152
|
syl2anc |
|- ( A e. CC -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
154 |
153 114
|
breqtrrd |
|- ( A e. CC -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) |
155 |
154
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) |
156 |
|
absge0 |
|- ( ( ( abs ` A ) + A ) e. CC -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) ) |
157 |
12 156
|
syl |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) ) |
158 |
121 157 19
|
ne0gt0d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 < ( abs ` ( ( abs ` A ) + A ) ) ) |
159 |
|
divge0 |
|- ( ( ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR /\ 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) /\ ( ( abs ` ( ( abs ` A ) + A ) ) e. RR /\ 0 < ( abs ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
160 |
120 155 121 158 159
|
syl22anc |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
161 |
113 122 126 160
|
mulge0d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
162 |
|
2pos |
|- 0 < 2 |
163 |
|
divge0 |
|- ( ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
164 |
115 162 163
|
mpanr12 |
|- ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
165 |
123 161 164
|
syl2anc |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
166 |
8 20
|
mulcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) |
167 |
1 166
|
eqeltrid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> B e. CC ) |
168 |
|
reval |
|- ( B e. CC -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
169 |
167 168
|
syl |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
170 |
1
|
oveq1i |
|- ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
171 |
1
|
fveq2i |
|- ( * ` B ) = ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
172 |
8 20
|
cjmuld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
173 |
171 172
|
eqtrid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
174 |
6
|
cjred |
|- ( A e. CC -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) ) |
175 |
174
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) ) |
176 |
12 16 19
|
cjdivd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
177 |
121
|
cjred |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) = ( abs ` ( ( abs ` A ) + A ) ) ) |
178 |
177
|
oveq2d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
179 |
176 178
|
eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
180 |
175 179
|
oveq12d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
181 |
173 180
|
eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
182 |
181
|
oveq2d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
183 |
12
|
cjcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( abs ` A ) + A ) ) e. CC ) |
184 |
183 16 19
|
divcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) |
185 |
8 20 184
|
adddid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
186 |
170 182 185
|
3eqtr4a |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
187 |
12 183 16 19
|
divdird |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
188 |
187
|
oveq2d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
189 |
186 188
|
eqtr4d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
190 |
189
|
oveq1d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
191 |
169 190
|
eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
192 |
165 191
|
breqtrrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( Re ` B ) ) |
193 |
|
subneg |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
194 |
9 193
|
mpancom |
|- ( A e. CC -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
195 |
194
|
eqeq1d |
|- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
196 |
9 127
|
subeq0ad |
|- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) |
197 |
195 196
|
bitr3d |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) |
198 |
197
|
necon3bid |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( abs ` A ) =/= -u A ) ) |
199 |
198
|
biimpa |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) =/= -u A ) |
200 |
|
resqcl |
|- ( ( _i x. B ) e. RR -> ( ( _i x. B ) ^ 2 ) e. RR ) |
201 |
|
ax-icn |
|- _i e. CC |
202 |
|
sqmul |
|- ( ( _i e. CC /\ B e. CC ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) ) |
203 |
201 167 202
|
sylancr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) ) |
204 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
205 |
204
|
a1i |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i ^ 2 ) = -u 1 ) |
206 |
205 112
|
oveq12d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i ^ 2 ) x. ( B ^ 2 ) ) = ( -u 1 x. A ) ) |
207 |
|
mulm1 |
|- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
208 |
207
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( -u 1 x. A ) = -u A ) |
209 |
203 206 208
|
3eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = -u A ) |
210 |
209
|
eleq1d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( _i x. B ) ^ 2 ) e. RR <-> -u A e. RR ) ) |
211 |
200 210
|
syl5ib |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> -u A e. RR ) ) |
212 |
|
renegcl |
|- ( -u A e. RR -> -u -u A e. RR ) |
213 |
140
|
eleq1d |
|- ( A e. CC -> ( -u -u A e. RR <-> A e. RR ) ) |
214 |
212 213
|
syl5ib |
|- ( A e. CC -> ( -u A e. RR -> A e. RR ) ) |
215 |
109 211 214
|
sylsyld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A e. RR ) ) |
216 |
|
sqge0 |
|- ( ( _i x. B ) e. RR -> 0 <_ ( ( _i x. B ) ^ 2 ) ) |
217 |
209
|
breq2d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( 0 <_ ( ( _i x. B ) ^ 2 ) <-> 0 <_ -u A ) ) |
218 |
216 217
|
syl5ib |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> 0 <_ -u A ) ) |
219 |
|
le0neg1 |
|- ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) |
220 |
219
|
biimprcd |
|- ( 0 <_ -u A -> ( A e. RR -> A <_ 0 ) ) |
221 |
218 215 220
|
syl6c |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A <_ 0 ) ) |
222 |
215 221
|
jcad |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( A e. RR /\ A <_ 0 ) ) ) |
223 |
|
absnid |
|- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
224 |
222 223
|
syl6 |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( abs ` A ) = -u A ) ) |
225 |
224
|
necon3ad |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) =/= -u A -> -. ( _i x. B ) e. RR ) ) |
226 |
199 225
|
mpd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR ) |
227 |
|
rpre |
|- ( ( _i x. B ) e. RR+ -> ( _i x. B ) e. RR ) |
228 |
226 227
|
nsyl |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR+ ) |
229 |
|
df-nel |
|- ( ( _i x. B ) e/ RR+ <-> -. ( _i x. B ) e. RR+ ) |
230 |
228 229
|
sylibr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i x. B ) e/ RR+ ) |
231 |
112 192 230
|
3jca |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B ^ 2 ) = A /\ 0 <_ ( Re ` B ) /\ ( _i x. B ) e/ RR+ ) ) |