| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrteulem.1 |  |-  B = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 2 | 1 | oveq1i |  |-  ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) | 
						
							| 3 |  | abscl |  |-  ( A e. CC -> ( abs ` A ) e. RR ) | 
						
							| 4 |  | absge0 |  |-  ( A e. CC -> 0 <_ ( abs ` A ) ) | 
						
							| 5 |  | resqrtcl |  |-  ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( sqrt ` ( abs ` A ) ) e. RR ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. CC ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. CC ) | 
						
							| 9 | 3 | recnd |  |-  ( A e. CC -> ( abs ` A ) e. CC ) | 
						
							| 10 |  | addcl |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) + A ) e. CC ) | 
						
							| 11 | 9 10 | mpancom |  |-  ( A e. CC -> ( ( abs ` A ) + A ) e. CC ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) | 
						
							| 13 |  | abscl |  |-  ( ( ( abs ` A ) + A ) e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) | 
						
							| 14 | 11 13 | syl |  |-  ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) | 
						
							| 17 | 11 | abs00ad |  |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) | 
						
							| 18 | 17 | necon3bid |  |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) =/= 0 <-> ( ( abs ` A ) + A ) =/= 0 ) ) | 
						
							| 19 | 18 | biimpar |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) | 
						
							| 20 | 12 16 19 | divcld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) | 
						
							| 21 | 8 20 | sqmuld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) ) | 
						
							| 22 | 2 21 | eqtrid |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) ) | 
						
							| 23 | 3 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. RR ) | 
						
							| 24 | 4 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` A ) ) | 
						
							| 25 |  | resqrtth |  |-  ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) ) | 
						
							| 26 | 23 24 25 | syl2anc |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) ) | 
						
							| 27 | 12 16 19 | sqdivd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) ) | 
						
							| 28 |  | absvalsq |  |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) | 
						
							| 29 |  | 2cn |  |-  2 e. CC | 
						
							| 30 |  | mulass |  |-  ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) | 
						
							| 31 | 29 30 | mp3an1 |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) | 
						
							| 32 | 9 31 | mpancom |  |-  ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) | 
						
							| 33 |  | mulcl |  |-  ( ( 2 e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( abs ` A ) ) e. CC ) | 
						
							| 34 | 29 9 33 | sylancr |  |-  ( A e. CC -> ( 2 x. ( abs ` A ) ) e. CC ) | 
						
							| 35 |  | mulcom |  |-  ( ( ( 2 x. ( abs ` A ) ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) | 
						
							| 36 | 34 35 | mpancom |  |-  ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) | 
						
							| 37 | 32 36 | eqtr3d |  |-  ( A e. CC -> ( 2 x. ( ( abs ` A ) x. A ) ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) | 
						
							| 38 | 28 37 | oveq12d |  |-  ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) | 
						
							| 39 |  | cjcl |  |-  ( A e. CC -> ( * ` A ) e. CC ) | 
						
							| 40 |  | adddi |  |-  ( ( A e. CC /\ ( * ` A ) e. CC /\ ( 2 x. ( abs ` A ) ) e. CC ) -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) | 
						
							| 41 | 39 34 40 | mpd3an23 |  |-  ( A e. CC -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) | 
						
							| 42 | 38 41 | eqtr4d |  |-  ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) ) | 
						
							| 43 |  | sqval |  |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) | 
						
							| 44 | 42 43 | oveq12d |  |-  ( A e. CC -> ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) ) | 
						
							| 45 |  | binom2 |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) ) | 
						
							| 46 | 9 45 | mpancom |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) ) | 
						
							| 47 |  | id |  |-  ( A e. CC -> A e. CC ) | 
						
							| 48 | 39 34 | addcld |  |-  ( A e. CC -> ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC ) | 
						
							| 49 | 47 48 47 | adddid |  |-  ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) ) | 
						
							| 50 | 44 46 49 | 3eqtr4d |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) | 
						
							| 51 | 9 34 | mulcld |  |-  ( A e. CC -> ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) e. CC ) | 
						
							| 52 | 9 39 | mulcld |  |-  ( A e. CC -> ( ( abs ` A ) x. ( * ` A ) ) e. CC ) | 
						
							| 53 | 51 52 | addcomd |  |-  ( A e. CC -> ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) ) | 
						
							| 54 | 9 9 | mulcld |  |-  ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) e. CC ) | 
						
							| 55 | 54 | 2timesd |  |-  ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) ) | 
						
							| 56 |  | mul12 |  |-  ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) | 
						
							| 57 | 29 9 9 56 | mp3an2i |  |-  ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) | 
						
							| 58 | 9 | sqvald |  |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) | 
						
							| 59 |  | mulcom |  |-  ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) | 
						
							| 60 | 39 59 | mpdan |  |-  ( A e. CC -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) | 
						
							| 61 | 28 58 60 | 3eqtr3d |  |-  ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) = ( ( * ` A ) x. A ) ) | 
						
							| 62 | 61 | oveq2d |  |-  ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) ) | 
						
							| 63 | 55 57 62 | 3eqtr3rd |  |-  ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) ) | 
						
							| 65 | 9 39 34 | adddid |  |-  ( A e. CC -> ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) ) | 
						
							| 66 | 53 64 65 | 3eqtr4d |  |-  ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) ) | 
						
							| 67 | 66 | oveq1d |  |-  ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) ) | 
						
							| 68 |  | cjadd |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) ) | 
						
							| 69 | 9 68 | mpancom |  |-  ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) ) | 
						
							| 70 | 3 | cjred |  |-  ( A e. CC -> ( * ` ( abs ` A ) ) = ( abs ` A ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( A e. CC -> ( ( * ` ( abs ` A ) ) + ( * ` A ) ) = ( ( abs ` A ) + ( * ` A ) ) ) | 
						
							| 72 | 69 71 | eqtrd |  |-  ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( abs ` A ) + ( * ` A ) ) ) | 
						
							| 73 | 72 | oveq2d |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) ) | 
						
							| 74 | 9 47 9 39 | muladdd |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) | 
						
							| 75 | 73 74 | eqtrd |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) | 
						
							| 76 |  | absvalsq |  |-  ( ( ( abs ` A ) + A ) e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 77 | 11 76 | syl |  |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 78 |  | mulcl |  |-  ( ( ( * ` A ) e. CC /\ A e. CC ) -> ( ( * ` A ) x. A ) e. CC ) | 
						
							| 79 | 39 78 | mpancom |  |-  ( A e. CC -> ( ( * ` A ) x. A ) e. CC ) | 
						
							| 80 | 54 79 | addcld |  |-  ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) e. CC ) | 
						
							| 81 |  | mulcl |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) x. A ) e. CC ) | 
						
							| 82 | 9 81 | mpancom |  |-  ( A e. CC -> ( ( abs ` A ) x. A ) e. CC ) | 
						
							| 83 | 80 52 82 | addassd |  |-  ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) | 
						
							| 84 | 75 77 83 | 3eqtr4d |  |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) ) | 
						
							| 85 | 9 48 47 | adddid |  |-  ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) ) | 
						
							| 86 | 67 84 85 | 3eqtr4d |  |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) | 
						
							| 87 | 50 86 | oveq12d |  |-  ( A e. CC -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) | 
						
							| 89 | 27 88 | eqtrd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) | 
						
							| 90 | 26 89 | oveq12d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) ) | 
						
							| 91 |  | addcl |  |-  ( ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC /\ A e. CC ) -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) | 
						
							| 92 | 48 91 | mpancom |  |-  ( A e. CC -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) | 
						
							| 93 | 9 47 92 | mul12d |  |-  ( A e. CC -> ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) | 
						
							| 94 | 93 | oveq1d |  |-  ( A e. CC -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) | 
						
							| 96 | 9 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. CC ) | 
						
							| 97 |  | mulcl |  |-  ( ( A e. CC /\ ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) | 
						
							| 98 | 92 97 | mpdan |  |-  ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) | 
						
							| 99 | 98 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) | 
						
							| 100 | 9 92 | mulcld |  |-  ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) | 
						
							| 101 | 100 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) | 
						
							| 102 |  | sqeq0 |  |-  ( ( abs ` ( ( abs ` A ) + A ) ) e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) ) | 
						
							| 103 | 15 102 | syl |  |-  ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) ) | 
						
							| 104 | 86 | eqeq1d |  |-  ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) ) | 
						
							| 105 | 103 104 17 | 3bitr3rd |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) ) | 
						
							| 106 | 105 | necon3bid |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) ) | 
						
							| 107 | 106 | biimpa |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) | 
						
							| 108 | 96 99 101 107 | divassd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) ) | 
						
							| 109 |  | simpl |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> A e. CC ) | 
						
							| 110 | 109 101 107 | divcan4d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = A ) | 
						
							| 111 | 95 108 110 | 3eqtr3d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) = A ) | 
						
							| 112 | 22 90 111 | 3eqtrd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = A ) | 
						
							| 113 | 6 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. RR ) | 
						
							| 114 | 11 | addcjd |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) = ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 115 |  | 2re |  |-  2 e. RR | 
						
							| 116 | 11 | recld |  |-  ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) e. RR ) | 
						
							| 117 |  | remulcl |  |-  ( ( 2 e. RR /\ ( Re ` ( ( abs ` A ) + A ) ) e. RR ) -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR ) | 
						
							| 118 | 115 116 117 | sylancr |  |-  ( A e. CC -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR ) | 
						
							| 119 | 114 118 | eqeltrd |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR ) | 
						
							| 120 | 119 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR ) | 
						
							| 121 | 14 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) | 
						
							| 122 | 120 121 19 | redivcld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. RR ) | 
						
							| 123 | 113 122 | remulcld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR ) | 
						
							| 124 |  | sqrtge0 |  |-  ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> 0 <_ ( sqrt ` ( abs ` A ) ) ) | 
						
							| 125 | 3 4 124 | syl2anc |  |-  ( A e. CC -> 0 <_ ( sqrt ` ( abs ` A ) ) ) | 
						
							| 126 | 125 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( sqrt ` ( abs ` A ) ) ) | 
						
							| 127 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 128 |  | releabs |  |-  ( -u A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) | 
						
							| 129 | 127 128 | syl |  |-  ( A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) | 
						
							| 130 |  | abscl |  |-  ( -u A e. CC -> ( abs ` -u A ) e. RR ) | 
						
							| 131 | 127 130 | syl |  |-  ( A e. CC -> ( abs ` -u A ) e. RR ) | 
						
							| 132 | 127 | recld |  |-  ( A e. CC -> ( Re ` -u A ) e. RR ) | 
						
							| 133 | 131 132 | subge0d |  |-  ( A e. CC -> ( 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) <-> ( Re ` -u A ) <_ ( abs ` -u A ) ) ) | 
						
							| 134 | 129 133 | mpbird |  |-  ( A e. CC -> 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) ) | 
						
							| 135 |  | readd |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) ) | 
						
							| 136 | 9 135 | mpancom |  |-  ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) ) | 
						
							| 137 | 3 | rered |  |-  ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` A ) ) | 
						
							| 138 |  | absneg |  |-  ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) | 
						
							| 139 | 137 138 | eqtr4d |  |-  ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` -u A ) ) | 
						
							| 140 |  | negneg |  |-  ( A e. CC -> -u -u A = A ) | 
						
							| 141 | 140 | fveq2d |  |-  ( A e. CC -> ( Re ` -u -u A ) = ( Re ` A ) ) | 
						
							| 142 | 127 | renegd |  |-  ( A e. CC -> ( Re ` -u -u A ) = -u ( Re ` -u A ) ) | 
						
							| 143 | 141 142 | eqtr3d |  |-  ( A e. CC -> ( Re ` A ) = -u ( Re ` -u A ) ) | 
						
							| 144 | 139 143 | oveq12d |  |-  ( A e. CC -> ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) = ( ( abs ` -u A ) + -u ( Re ` -u A ) ) ) | 
						
							| 145 | 131 | recnd |  |-  ( A e. CC -> ( abs ` -u A ) e. CC ) | 
						
							| 146 | 132 | recnd |  |-  ( A e. CC -> ( Re ` -u A ) e. CC ) | 
						
							| 147 | 145 146 | negsubd |  |-  ( A e. CC -> ( ( abs ` -u A ) + -u ( Re ` -u A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) ) | 
						
							| 148 | 136 144 147 | 3eqtrd |  |-  ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) ) | 
						
							| 149 | 134 148 | breqtrrd |  |-  ( A e. CC -> 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) | 
						
							| 150 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 151 |  | mulge0 |  |-  ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 152 | 115 150 151 | mpanl12 |  |-  ( ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 153 | 116 149 152 | syl2anc |  |-  ( A e. CC -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 154 | 153 114 | breqtrrd |  |-  ( A e. CC -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 155 | 154 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 156 |  | absge0 |  |-  ( ( ( abs ` A ) + A ) e. CC -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) ) | 
						
							| 157 | 12 156 | syl |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) ) | 
						
							| 158 | 121 157 19 | ne0gt0d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 < ( abs ` ( ( abs ` A ) + A ) ) ) | 
						
							| 159 |  | divge0 |  |-  ( ( ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR /\ 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) /\ ( ( abs ` ( ( abs ` A ) + A ) ) e. RR /\ 0 < ( abs ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 160 | 120 155 121 158 159 | syl22anc |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 161 | 113 122 126 160 | mulge0d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) | 
						
							| 162 |  | 2pos |  |-  0 < 2 | 
						
							| 163 |  | divge0 |  |-  ( ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) | 
						
							| 164 | 115 162 163 | mpanr12 |  |-  ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) | 
						
							| 165 | 123 161 164 | syl2anc |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) | 
						
							| 166 | 8 20 | mulcld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) | 
						
							| 167 | 1 166 | eqeltrid |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> B e. CC ) | 
						
							| 168 |  | reval |  |-  ( B e. CC -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) | 
						
							| 169 | 167 168 | syl |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) | 
						
							| 170 | 1 | oveq1i |  |-  ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) | 
						
							| 171 | 1 | fveq2i |  |-  ( * ` B ) = ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) | 
						
							| 172 | 8 20 | cjmuld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) | 
						
							| 173 | 171 172 | eqtrid |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) | 
						
							| 174 | 6 | cjred |  |-  ( A e. CC -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) ) | 
						
							| 175 | 174 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) ) | 
						
							| 176 | 12 16 19 | cjdivd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) ) | 
						
							| 177 | 121 | cjred |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) = ( abs ` ( ( abs ` A ) + A ) ) ) | 
						
							| 178 | 177 | oveq2d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 179 | 176 178 | eqtrd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) | 
						
							| 180 | 175 179 | oveq12d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) | 
						
							| 181 | 173 180 | eqtrd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) | 
						
							| 182 | 181 | oveq2d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) | 
						
							| 183 | 12 | cjcld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( abs ` A ) + A ) ) e. CC ) | 
						
							| 184 | 183 16 19 | divcld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) | 
						
							| 185 | 8 20 184 | adddid |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) | 
						
							| 186 | 170 182 185 | 3eqtr4a |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) | 
						
							| 187 | 12 183 16 19 | divdird |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) | 
						
							| 188 | 187 | oveq2d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) | 
						
							| 189 | 186 188 | eqtr4d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) | 
						
							| 190 | 189 | oveq1d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) | 
						
							| 191 | 169 190 | eqtrd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) | 
						
							| 192 | 165 191 | breqtrrd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( Re ` B ) ) | 
						
							| 193 |  | subneg |  |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) | 
						
							| 194 | 9 193 | mpancom |  |-  ( A e. CC -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) | 
						
							| 195 | 194 | eqeq1d |  |-  ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) | 
						
							| 196 | 9 127 | subeq0ad |  |-  ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) | 
						
							| 197 | 195 196 | bitr3d |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) | 
						
							| 198 | 197 | necon3bid |  |-  ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( abs ` A ) =/= -u A ) ) | 
						
							| 199 | 198 | biimpa |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) =/= -u A ) | 
						
							| 200 |  | resqcl |  |-  ( ( _i x. B ) e. RR -> ( ( _i x. B ) ^ 2 ) e. RR ) | 
						
							| 201 |  | ax-icn |  |-  _i e. CC | 
						
							| 202 |  | sqmul |  |-  ( ( _i e. CC /\ B e. CC ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 203 | 201 167 202 | sylancr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 204 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 205 | 204 | a1i |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i ^ 2 ) = -u 1 ) | 
						
							| 206 | 205 112 | oveq12d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i ^ 2 ) x. ( B ^ 2 ) ) = ( -u 1 x. A ) ) | 
						
							| 207 |  | mulm1 |  |-  ( A e. CC -> ( -u 1 x. A ) = -u A ) | 
						
							| 208 | 207 | adantr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( -u 1 x. A ) = -u A ) | 
						
							| 209 | 203 206 208 | 3eqtrd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = -u A ) | 
						
							| 210 | 209 | eleq1d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( _i x. B ) ^ 2 ) e. RR <-> -u A e. RR ) ) | 
						
							| 211 | 200 210 | imbitrid |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> -u A e. RR ) ) | 
						
							| 212 |  | renegcl |  |-  ( -u A e. RR -> -u -u A e. RR ) | 
						
							| 213 | 140 | eleq1d |  |-  ( A e. CC -> ( -u -u A e. RR <-> A e. RR ) ) | 
						
							| 214 | 212 213 | imbitrid |  |-  ( A e. CC -> ( -u A e. RR -> A e. RR ) ) | 
						
							| 215 | 109 211 214 | sylsyld |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A e. RR ) ) | 
						
							| 216 |  | sqge0 |  |-  ( ( _i x. B ) e. RR -> 0 <_ ( ( _i x. B ) ^ 2 ) ) | 
						
							| 217 | 209 | breq2d |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( 0 <_ ( ( _i x. B ) ^ 2 ) <-> 0 <_ -u A ) ) | 
						
							| 218 | 216 217 | imbitrid |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> 0 <_ -u A ) ) | 
						
							| 219 |  | le0neg1 |  |-  ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) | 
						
							| 220 | 219 | biimprcd |  |-  ( 0 <_ -u A -> ( A e. RR -> A <_ 0 ) ) | 
						
							| 221 | 218 215 220 | syl6c |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A <_ 0 ) ) | 
						
							| 222 | 215 221 | jcad |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( A e. RR /\ A <_ 0 ) ) ) | 
						
							| 223 |  | absnid |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) | 
						
							| 224 | 222 223 | syl6 |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( abs ` A ) = -u A ) ) | 
						
							| 225 | 224 | necon3ad |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) =/= -u A -> -. ( _i x. B ) e. RR ) ) | 
						
							| 226 | 199 225 | mpd |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR ) | 
						
							| 227 |  | rpre |  |-  ( ( _i x. B ) e. RR+ -> ( _i x. B ) e. RR ) | 
						
							| 228 | 226 227 | nsyl |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR+ ) | 
						
							| 229 |  | df-nel |  |-  ( ( _i x. B ) e/ RR+ <-> -. ( _i x. B ) e. RR+ ) | 
						
							| 230 | 228 229 | sylibr |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i x. B ) e/ RR+ ) | 
						
							| 231 | 112 192 230 | 3jca |  |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B ^ 2 ) = A /\ 0 <_ ( Re ` B ) /\ ( _i x. B ) e/ RR+ ) ) |