Metamath Proof Explorer


Theorem sqreulem

Description: Lemma for sqreu : write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Hypothesis sqrteulem.1
|- B = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) )
Assertion sqreulem
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B ^ 2 ) = A /\ 0 <_ ( Re ` B ) /\ ( _i x. B ) e/ RR+ ) )

Proof

Step Hyp Ref Expression
1 sqrteulem.1
 |-  B = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) )
2 1 oveq1i
 |-  ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 )
3 abscl
 |-  ( A e. CC -> ( abs ` A ) e. RR )
4 absge0
 |-  ( A e. CC -> 0 <_ ( abs ` A ) )
5 resqrtcl
 |-  ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( sqrt ` ( abs ` A ) ) e. RR )
6 3 4 5 syl2anc
 |-  ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. RR )
7 6 recnd
 |-  ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. CC )
8 7 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. CC )
9 3 recnd
 |-  ( A e. CC -> ( abs ` A ) e. CC )
10 addcl
 |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) + A ) e. CC )
11 9 10 mpancom
 |-  ( A e. CC -> ( ( abs ` A ) + A ) e. CC )
12 11 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) + A ) e. CC )
13 abscl
 |-  ( ( ( abs ` A ) + A ) e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR )
14 11 13 syl
 |-  ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR )
15 14 recnd
 |-  ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. CC )
16 15 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. CC )
17 11 abs00ad
 |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) )
18 17 necon3bid
 |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) =/= 0 <-> ( ( abs ` A ) + A ) =/= 0 ) )
19 18 biimpar
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 )
20 12 16 19 divcld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC )
21 8 20 sqmuld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) )
22 2 21 eqtrid
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) )
23 3 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. RR )
24 4 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` A ) )
25 resqrtth
 |-  ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) )
26 23 24 25 syl2anc
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) )
27 12 16 19 sqdivd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) )
28 absvalsq
 |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) )
29 2cn
 |-  2 e. CC
30 mulass
 |-  ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) )
31 29 30 mp3an1
 |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) )
32 9 31 mpancom
 |-  ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) )
33 mulcl
 |-  ( ( 2 e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( abs ` A ) ) e. CC )
34 29 9 33 sylancr
 |-  ( A e. CC -> ( 2 x. ( abs ` A ) ) e. CC )
35 mulcom
 |-  ( ( ( 2 x. ( abs ` A ) ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) )
36 34 35 mpancom
 |-  ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) )
37 32 36 eqtr3d
 |-  ( A e. CC -> ( 2 x. ( ( abs ` A ) x. A ) ) = ( A x. ( 2 x. ( abs ` A ) ) ) )
38 28 37 oveq12d
 |-  ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) )
39 cjcl
 |-  ( A e. CC -> ( * ` A ) e. CC )
40 adddi
 |-  ( ( A e. CC /\ ( * ` A ) e. CC /\ ( 2 x. ( abs ` A ) ) e. CC ) -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) )
41 39 34 40 mpd3an23
 |-  ( A e. CC -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) )
42 38 41 eqtr4d
 |-  ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) )
43 sqval
 |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) )
44 42 43 oveq12d
 |-  ( A e. CC -> ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) )
45 binom2
 |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) )
46 9 45 mpancom
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) )
47 id
 |-  ( A e. CC -> A e. CC )
48 39 34 addcld
 |-  ( A e. CC -> ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC )
49 47 48 47 adddid
 |-  ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) )
50 44 46 49 3eqtr4d
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) )
51 9 34 mulcld
 |-  ( A e. CC -> ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) e. CC )
52 9 39 mulcld
 |-  ( A e. CC -> ( ( abs ` A ) x. ( * ` A ) ) e. CC )
53 51 52 addcomd
 |-  ( A e. CC -> ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) )
54 9 9 mulcld
 |-  ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) e. CC )
55 54 2timesd
 |-  ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) )
56 mul12
 |-  ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) )
57 29 9 9 56 mp3an2i
 |-  ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) )
58 9 sqvald
 |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) )
59 mulcom
 |-  ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) )
60 39 59 mpdan
 |-  ( A e. CC -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) )
61 28 58 60 3eqtr3d
 |-  ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) = ( ( * ` A ) x. A ) )
62 61 oveq2d
 |-  ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) )
63 55 57 62 3eqtr3rd
 |-  ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) )
64 63 oveq1d
 |-  ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) )
65 9 39 34 adddid
 |-  ( A e. CC -> ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) )
66 53 64 65 3eqtr4d
 |-  ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) )
67 66 oveq1d
 |-  ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) )
68 cjadd
 |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) )
69 9 68 mpancom
 |-  ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) )
70 3 cjred
 |-  ( A e. CC -> ( * ` ( abs ` A ) ) = ( abs ` A ) )
71 70 oveq1d
 |-  ( A e. CC -> ( ( * ` ( abs ` A ) ) + ( * ` A ) ) = ( ( abs ` A ) + ( * ` A ) ) )
72 69 71 eqtrd
 |-  ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( abs ` A ) + ( * ` A ) ) )
73 72 oveq2d
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) )
74 9 47 9 39 muladdd
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) )
75 73 74 eqtrd
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) )
76 absvalsq
 |-  ( ( ( abs ` A ) + A ) e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) )
77 11 76 syl
 |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) )
78 mulcl
 |-  ( ( ( * ` A ) e. CC /\ A e. CC ) -> ( ( * ` A ) x. A ) e. CC )
79 39 78 mpancom
 |-  ( A e. CC -> ( ( * ` A ) x. A ) e. CC )
80 54 79 addcld
 |-  ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) e. CC )
81 mulcl
 |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) x. A ) e. CC )
82 9 81 mpancom
 |-  ( A e. CC -> ( ( abs ` A ) x. A ) e. CC )
83 80 52 82 addassd
 |-  ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) )
84 75 77 83 3eqtr4d
 |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) )
85 9 48 47 adddid
 |-  ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) )
86 67 84 85 3eqtr4d
 |-  ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) )
87 50 86 oveq12d
 |-  ( A e. CC -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) )
88 87 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) )
89 27 88 eqtrd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) )
90 26 89 oveq12d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) )
91 addcl
 |-  ( ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC /\ A e. CC ) -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC )
92 48 91 mpancom
 |-  ( A e. CC -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC )
93 9 47 92 mul12d
 |-  ( A e. CC -> ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) )
94 93 oveq1d
 |-  ( A e. CC -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) )
95 94 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) )
96 9 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. CC )
97 mulcl
 |-  ( ( A e. CC /\ ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC )
98 92 97 mpdan
 |-  ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC )
99 98 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC )
100 9 92 mulcld
 |-  ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC )
101 100 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC )
102 sqeq0
 |-  ( ( abs ` ( ( abs ` A ) + A ) ) e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) )
103 15 102 syl
 |-  ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) )
104 86 eqeq1d
 |-  ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) )
105 103 104 17 3bitr3rd
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) )
106 105 necon3bid
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) )
107 106 biimpa
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 )
108 96 99 101 107 divassd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) )
109 simpl
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> A e. CC )
110 109 101 107 divcan4d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = A )
111 95 108 110 3eqtr3d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) = A )
112 22 90 111 3eqtrd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = A )
113 6 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. RR )
114 11 addcjd
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) = ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) )
115 2re
 |-  2 e. RR
116 11 recld
 |-  ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) e. RR )
117 remulcl
 |-  ( ( 2 e. RR /\ ( Re ` ( ( abs ` A ) + A ) ) e. RR ) -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR )
118 115 116 117 sylancr
 |-  ( A e. CC -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR )
119 114 118 eqeltrd
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR )
120 119 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR )
121 14 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. RR )
122 120 121 19 redivcld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. RR )
123 113 122 remulcld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR )
124 sqrtge0
 |-  ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> 0 <_ ( sqrt ` ( abs ` A ) ) )
125 3 4 124 syl2anc
 |-  ( A e. CC -> 0 <_ ( sqrt ` ( abs ` A ) ) )
126 125 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( sqrt ` ( abs ` A ) ) )
127 negcl
 |-  ( A e. CC -> -u A e. CC )
128 releabs
 |-  ( -u A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) )
129 127 128 syl
 |-  ( A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) )
130 abscl
 |-  ( -u A e. CC -> ( abs ` -u A ) e. RR )
131 127 130 syl
 |-  ( A e. CC -> ( abs ` -u A ) e. RR )
132 127 recld
 |-  ( A e. CC -> ( Re ` -u A ) e. RR )
133 131 132 subge0d
 |-  ( A e. CC -> ( 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) <-> ( Re ` -u A ) <_ ( abs ` -u A ) ) )
134 129 133 mpbird
 |-  ( A e. CC -> 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) )
135 readd
 |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) )
136 9 135 mpancom
 |-  ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) )
137 3 rered
 |-  ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` A ) )
138 absneg
 |-  ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) )
139 137 138 eqtr4d
 |-  ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` -u A ) )
140 negneg
 |-  ( A e. CC -> -u -u A = A )
141 140 fveq2d
 |-  ( A e. CC -> ( Re ` -u -u A ) = ( Re ` A ) )
142 127 renegd
 |-  ( A e. CC -> ( Re ` -u -u A ) = -u ( Re ` -u A ) )
143 141 142 eqtr3d
 |-  ( A e. CC -> ( Re ` A ) = -u ( Re ` -u A ) )
144 139 143 oveq12d
 |-  ( A e. CC -> ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) = ( ( abs ` -u A ) + -u ( Re ` -u A ) ) )
145 131 recnd
 |-  ( A e. CC -> ( abs ` -u A ) e. CC )
146 132 recnd
 |-  ( A e. CC -> ( Re ` -u A ) e. CC )
147 145 146 negsubd
 |-  ( A e. CC -> ( ( abs ` -u A ) + -u ( Re ` -u A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) )
148 136 144 147 3eqtrd
 |-  ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) )
149 134 148 breqtrrd
 |-  ( A e. CC -> 0 <_ ( Re ` ( ( abs ` A ) + A ) ) )
150 0le2
 |-  0 <_ 2
151 mulge0
 |-  ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) )
152 115 150 151 mpanl12
 |-  ( ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) )
153 116 149 152 syl2anc
 |-  ( A e. CC -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) )
154 153 114 breqtrrd
 |-  ( A e. CC -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) )
155 154 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) )
156 absge0
 |-  ( ( ( abs ` A ) + A ) e. CC -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) )
157 12 156 syl
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) )
158 121 157 19 ne0gt0d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 < ( abs ` ( ( abs ` A ) + A ) ) )
159 divge0
 |-  ( ( ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR /\ 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) /\ ( ( abs ` ( ( abs ` A ) + A ) ) e. RR /\ 0 < ( abs ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) )
160 120 155 121 158 159 syl22anc
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) )
161 113 122 126 160 mulge0d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) )
162 2pos
 |-  0 < 2
163 divge0
 |-  ( ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) )
164 115 162 163 mpanr12
 |-  ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) )
165 123 161 164 syl2anc
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) )
166 8 20 mulcld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC )
167 1 166 eqeltrid
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> B e. CC )
168 reval
 |-  ( B e. CC -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) )
169 167 168 syl
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) )
170 1 oveq1i
 |-  ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) )
171 1 fveq2i
 |-  ( * ` B ) = ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) )
172 8 20 cjmuld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) )
173 171 172 eqtrid
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) )
174 6 cjred
 |-  ( A e. CC -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) )
175 174 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) )
176 12 16 19 cjdivd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) )
177 121 cjred
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) = ( abs ` ( ( abs ` A ) + A ) ) )
178 177 oveq2d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) )
179 176 178 eqtrd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) )
180 175 179 oveq12d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) )
181 173 180 eqtrd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) )
182 181 oveq2d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) )
183 12 cjcld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( abs ` A ) + A ) ) e. CC )
184 183 16 19 divcld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC )
185 8 20 184 adddid
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) )
186 170 182 185 3eqtr4a
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) )
187 12 183 16 19 divdird
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) )
188 187 oveq2d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) )
189 186 188 eqtr4d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) )
190 189 oveq1d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) )
191 169 190 eqtrd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) )
192 165 191 breqtrrd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( Re ` B ) )
193 subneg
 |-  ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) )
194 9 193 mpancom
 |-  ( A e. CC -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) )
195 194 eqeq1d
 |-  ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) )
196 9 127 subeq0ad
 |-  ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) )
197 195 196 bitr3d
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) )
198 197 necon3bid
 |-  ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( abs ` A ) =/= -u A ) )
199 198 biimpa
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) =/= -u A )
200 resqcl
 |-  ( ( _i x. B ) e. RR -> ( ( _i x. B ) ^ 2 ) e. RR )
201 ax-icn
 |-  _i e. CC
202 sqmul
 |-  ( ( _i e. CC /\ B e. CC ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) )
203 201 167 202 sylancr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) )
204 i2
 |-  ( _i ^ 2 ) = -u 1
205 204 a1i
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i ^ 2 ) = -u 1 )
206 205 112 oveq12d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i ^ 2 ) x. ( B ^ 2 ) ) = ( -u 1 x. A ) )
207 mulm1
 |-  ( A e. CC -> ( -u 1 x. A ) = -u A )
208 207 adantr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( -u 1 x. A ) = -u A )
209 203 206 208 3eqtrd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = -u A )
210 209 eleq1d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( _i x. B ) ^ 2 ) e. RR <-> -u A e. RR ) )
211 200 210 syl5ib
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> -u A e. RR ) )
212 renegcl
 |-  ( -u A e. RR -> -u -u A e. RR )
213 140 eleq1d
 |-  ( A e. CC -> ( -u -u A e. RR <-> A e. RR ) )
214 212 213 syl5ib
 |-  ( A e. CC -> ( -u A e. RR -> A e. RR ) )
215 109 211 214 sylsyld
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A e. RR ) )
216 sqge0
 |-  ( ( _i x. B ) e. RR -> 0 <_ ( ( _i x. B ) ^ 2 ) )
217 209 breq2d
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( 0 <_ ( ( _i x. B ) ^ 2 ) <-> 0 <_ -u A ) )
218 216 217 syl5ib
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> 0 <_ -u A ) )
219 le0neg1
 |-  ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) )
220 219 biimprcd
 |-  ( 0 <_ -u A -> ( A e. RR -> A <_ 0 ) )
221 218 215 220 syl6c
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A <_ 0 ) )
222 215 221 jcad
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( A e. RR /\ A <_ 0 ) ) )
223 absnid
 |-  ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A )
224 222 223 syl6
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( abs ` A ) = -u A ) )
225 224 necon3ad
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) =/= -u A -> -. ( _i x. B ) e. RR ) )
226 199 225 mpd
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR )
227 rpre
 |-  ( ( _i x. B ) e. RR+ -> ( _i x. B ) e. RR )
228 226 227 nsyl
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR+ )
229 df-nel
 |-  ( ( _i x. B ) e/ RR+ <-> -. ( _i x. B ) e. RR+ )
230 228 229 sylibr
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i x. B ) e/ RR+ )
231 112 192 230 3jca
 |-  ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B ^ 2 ) = A /\ 0 <_ ( Re ` B ) /\ ( _i x. B ) e/ RR+ ) )