Metamath Proof Explorer


Theorem sqrlem4

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses sqrlem1.1
|- S = { x e. RR+ | ( x ^ 2 ) <_ A }
sqrlem1.2
|- B = sup ( S , RR , < )
Assertion sqrlem4
|- ( ( A e. RR+ /\ A <_ 1 ) -> ( B e. RR+ /\ B <_ 1 ) )

Proof

Step Hyp Ref Expression
1 sqrlem1.1
 |-  S = { x e. RR+ | ( x ^ 2 ) <_ A }
2 sqrlem1.2
 |-  B = sup ( S , RR , < )
3 1 2 sqrlem3
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) )
4 suprcl
 |-  ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) -> sup ( S , RR , < ) e. RR )
5 3 4 syl
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> sup ( S , RR , < ) e. RR )
6 2 5 eqeltrid
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> B e. RR )
7 rpgt0
 |-  ( A e. RR+ -> 0 < A )
8 7 adantr
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> 0 < A )
9 1 2 sqrlem2
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> A e. S )
10 suprub
 |-  ( ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) /\ A e. S ) -> A <_ sup ( S , RR , < ) )
11 3 9 10 syl2anc
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> A <_ sup ( S , RR , < ) )
12 11 2 breqtrrdi
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> A <_ B )
13 0re
 |-  0 e. RR
14 rpre
 |-  ( A e. RR+ -> A e. RR )
15 ltletr
 |-  ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) )
16 13 14 6 15 mp3an2ani
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) )
17 8 12 16 mp2and
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> 0 < B )
18 6 17 elrpd
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> B e. RR+ )
19 1 2 sqrlem1
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> A. z e. S z <_ 1 )
20 1re
 |-  1 e. RR
21 suprleub
 |-  ( ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) /\ 1 e. RR ) -> ( sup ( S , RR , < ) <_ 1 <-> A. z e. S z <_ 1 ) )
22 3 20 21 sylancl
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( sup ( S , RR , < ) <_ 1 <-> A. z e. S z <_ 1 ) )
23 19 22 mpbird
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> sup ( S , RR , < ) <_ 1 )
24 2 23 eqbrtrid
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> B <_ 1 )
25 18 24 jca
 |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( B e. RR+ /\ B <_ 1 ) )