| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr1 |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x ^ 2 ) = A ) | 
						
							| 2 |  | simprr1 |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( y ^ 2 ) = A ) | 
						
							| 3 | 1 2 | eqtr4d |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x ^ 2 ) = ( y ^ 2 ) ) | 
						
							| 4 |  | sqeqor |  |-  ( ( x e. CC /\ y e. CC ) -> ( ( x ^ 2 ) = ( y ^ 2 ) <-> ( x = y \/ x = -u y ) ) ) | 
						
							| 5 | 4 | ad2ant2r |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( ( x ^ 2 ) = ( y ^ 2 ) <-> ( x = y \/ x = -u y ) ) ) | 
						
							| 6 | 3 5 | mpbid |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x = y \/ x = -u y ) ) | 
						
							| 7 | 6 | ord |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> x = -u y ) ) | 
						
							| 8 |  | 3simpc |  |-  ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> ( 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) | 
						
							| 9 |  | fveq2 |  |-  ( x = -u y -> ( Re ` x ) = ( Re ` -u y ) ) | 
						
							| 10 | 9 | breq2d |  |-  ( x = -u y -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` -u y ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( x = -u y -> ( _i x. x ) = ( _i x. -u y ) ) | 
						
							| 12 |  | neleq1 |  |-  ( ( _i x. x ) = ( _i x. -u y ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. -u y ) e/ RR+ ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( x = -u y -> ( ( _i x. x ) e/ RR+ <-> ( _i x. -u y ) e/ RR+ ) ) | 
						
							| 14 | 10 13 | anbi12d |  |-  ( x = -u y -> ( ( 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 15 | 8 14 | syl5ibcom |  |-  ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> ( x = -u y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 16 | 15 | ad2antlr |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x = -u y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 17 | 7 16 | syld |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 18 |  | negeq |  |-  ( y = 0 -> -u y = -u 0 ) | 
						
							| 19 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( y = 0 -> -u y = 0 ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( y = 0 -> ( x = -u y <-> x = 0 ) ) | 
						
							| 22 |  | eqeq2 |  |-  ( y = 0 -> ( x = y <-> x = 0 ) ) | 
						
							| 23 | 21 22 | bitr4d |  |-  ( y = 0 -> ( x = -u y <-> x = y ) ) | 
						
							| 24 | 23 | biimpcd |  |-  ( x = -u y -> ( y = 0 -> x = y ) ) | 
						
							| 25 | 24 | necon3bd |  |-  ( x = -u y -> ( -. x = y -> y =/= 0 ) ) | 
						
							| 26 | 7 25 | syli |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> y =/= 0 ) ) | 
						
							| 27 |  | 3simpc |  |-  ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) -> ( 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) | 
						
							| 28 |  | cnpart |  |-  ( ( y e. CC /\ y =/= 0 ) -> ( ( 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) <-> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 29 | 27 28 | imbitrid |  |-  ( ( y e. CC /\ y =/= 0 ) -> ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 30 | 29 | impancom |  |-  ( ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> ( y =/= 0 -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( y =/= 0 -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 32 | 26 31 | syld |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) | 
						
							| 33 | 17 32 | pm2.65d |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> -. -. x = y ) | 
						
							| 34 | 33 | notnotrd |  |-  ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> x = y ) | 
						
							| 35 | 34 | an4s |  |-  ( ( ( x e. CC /\ y e. CC ) /\ ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> x = y ) | 
						
							| 36 | 35 | ex |  |-  ( ( x e. CC /\ y e. CC ) -> ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) | 
						
							| 37 | 36 | a1i |  |-  ( A e. CC -> ( ( x e. CC /\ y e. CC ) -> ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) ) | 
						
							| 38 | 37 | ralrimivv |  |-  ( A e. CC -> A. x e. CC A. y e. CC ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) | 
						
							| 39 |  | oveq1 |  |-  ( x = y -> ( x ^ 2 ) = ( y ^ 2 ) ) | 
						
							| 40 | 39 | eqeq1d |  |-  ( x = y -> ( ( x ^ 2 ) = A <-> ( y ^ 2 ) = A ) ) | 
						
							| 41 |  | fveq2 |  |-  ( x = y -> ( Re ` x ) = ( Re ` y ) ) | 
						
							| 42 | 41 | breq2d |  |-  ( x = y -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` y ) ) ) | 
						
							| 43 |  | oveq2 |  |-  ( x = y -> ( _i x. x ) = ( _i x. y ) ) | 
						
							| 44 |  | neleq1 |  |-  ( ( _i x. x ) = ( _i x. y ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) | 
						
							| 45 | 43 44 | syl |  |-  ( x = y -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) | 
						
							| 46 | 40 42 45 | 3anbi123d |  |-  ( x = y -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) | 
						
							| 47 | 46 | rmo4 |  |-  ( E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> A. x e. CC A. y e. CC ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) | 
						
							| 48 | 38 47 | sylibr |  |-  ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |