Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
|
sqrtval |
|- ( 0 e. CC -> ( sqrt ` 0 ) = ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
3 |
1 2
|
ax-mp |
|- ( sqrt ` 0 ) = ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
4 |
|
id |
|- ( 0 e. CC -> 0 e. CC ) |
5 |
|
sqr0lem |
|- ( ( x e. CC /\ ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) <-> x = 0 ) |
6 |
5
|
biimpi |
|- ( ( x e. CC /\ ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> x = 0 ) |
7 |
6
|
ex |
|- ( x e. CC -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> x = 0 ) ) |
8 |
|
simpr |
|- ( ( x e. CC /\ ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
9 |
5 8
|
sylbir |
|- ( x = 0 -> ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
10 |
7 9
|
impbid1 |
|- ( x e. CC -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> x = 0 ) ) |
11 |
10
|
adantl |
|- ( ( 0 e. CC /\ x e. CC ) -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> x = 0 ) ) |
12 |
4 11
|
riota5 |
|- ( 0 e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = 0 ) |
13 |
1 12
|
ax-mp |
|- ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = 0 |
14 |
3 13
|
eqtri |
|- ( sqrt ` 0 ) = 0 |