Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
|
sqrtval |
|- ( 0 e. CC -> ( sqrt ` 0 ) = ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
3 |
1 2
|
ax-mp |
|- ( sqrt ` 0 ) = ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
4 |
|
id |
|- ( 0 e. CC -> 0 e. CC ) |
5 |
|
sqeq0 |
|- ( x e. CC -> ( ( x ^ 2 ) = 0 <-> x = 0 ) ) |
6 |
5
|
biimpa |
|- ( ( x e. CC /\ ( x ^ 2 ) = 0 ) -> x = 0 ) |
7 |
6
|
3ad2antr1 |
|- ( ( x e. CC /\ ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> x = 0 ) |
8 |
7
|
ex |
|- ( x e. CC -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> x = 0 ) ) |
9 |
|
sq0i |
|- ( x = 0 -> ( x ^ 2 ) = 0 ) |
10 |
|
0le0 |
|- 0 <_ 0 |
11 |
|
fveq2 |
|- ( x = 0 -> ( Re ` x ) = ( Re ` 0 ) ) |
12 |
|
re0 |
|- ( Re ` 0 ) = 0 |
13 |
11 12
|
eqtrdi |
|- ( x = 0 -> ( Re ` x ) = 0 ) |
14 |
10 13
|
breqtrrid |
|- ( x = 0 -> 0 <_ ( Re ` x ) ) |
15 |
|
0re |
|- 0 e. RR |
16 |
|
eleq1 |
|- ( x = 0 -> ( x e. RR <-> 0 e. RR ) ) |
17 |
15 16
|
mpbiri |
|- ( x = 0 -> x e. RR ) |
18 |
|
rennim |
|- ( x e. RR -> ( _i x. x ) e/ RR+ ) |
19 |
17 18
|
syl |
|- ( x = 0 -> ( _i x. x ) e/ RR+ ) |
20 |
9 14 19
|
3jca |
|- ( x = 0 -> ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
21 |
8 20
|
impbid1 |
|- ( x e. CC -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> x = 0 ) ) |
22 |
21
|
adantl |
|- ( ( 0 e. CC /\ x e. CC ) -> ( ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> x = 0 ) ) |
23 |
4 22
|
riota5 |
|- ( 0 e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = 0 ) |
24 |
1 23
|
ax-mp |
|- ( iota_ x e. CC ( ( x ^ 2 ) = 0 /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = 0 |
25 |
3 24
|
eqtri |
|- ( sqrt ` 0 ) = 0 |