Description: A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999) (Proof shortened by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | sqrt00 | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) = 0 <-> A = 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
2 | 1 | eqeq2i | |- ( ( sqrt ` A ) = ( sqrt ` 0 ) <-> ( sqrt ` A ) = 0 ) |
3 | 0re | |- 0 e. RR |
|
4 | 0le0 | |- 0 <_ 0 |
|
5 | sqrt11 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( 0 e. RR /\ 0 <_ 0 ) ) -> ( ( sqrt ` A ) = ( sqrt ` 0 ) <-> A = 0 ) ) |
|
6 | 3 4 5 | mpanr12 | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) = ( sqrt ` 0 ) <-> A = 0 ) ) |
7 | 2 6 | bitr3id | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) = 0 <-> A = 0 ) ) |