Description: A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrt00 | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) = 0 <-> A = 0 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sqrt0 | |- ( sqrt ` 0 ) = 0 | |
| 2 | 1 | eqeq2i | |- ( ( sqrt ` A ) = ( sqrt ` 0 ) <-> ( sqrt ` A ) = 0 ) | 
| 3 | 0re | |- 0 e. RR | |
| 4 | 0le0 | |- 0 <_ 0 | |
| 5 | sqrt11 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( 0 e. RR /\ 0 <_ 0 ) ) -> ( ( sqrt ` A ) = ( sqrt ` 0 ) <-> A = 0 ) ) | |
| 6 | 3 4 5 | mpanr12 | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) = ( sqrt ` 0 ) <-> A = 0 ) ) | 
| 7 | 2 6 | bitr3id | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) = 0 <-> A = 0 ) ) |