Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
|- 2 e. CC |
2 |
|
cxpsqrt |
|- ( 2 e. CC -> ( 2 ^c ( 1 / 2 ) ) = ( sqrt ` 2 ) ) |
3 |
1 2
|
ax-mp |
|- ( 2 ^c ( 1 / 2 ) ) = ( sqrt ` 2 ) |
4 |
3
|
eqcomi |
|- ( sqrt ` 2 ) = ( 2 ^c ( 1 / 2 ) ) |
5 |
4
|
oveq1i |
|- ( ( sqrt ` 2 ) ^c ( 2 logb 9 ) ) = ( ( 2 ^c ( 1 / 2 ) ) ^c ( 2 logb 9 ) ) |
6 |
|
2rp |
|- 2 e. RR+ |
7 |
|
halfre |
|- ( 1 / 2 ) e. RR |
8 |
|
2z |
|- 2 e. ZZ |
9 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
10 |
8 9
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
11 |
|
9nn |
|- 9 e. NN |
12 |
|
nnrp |
|- ( 9 e. NN -> 9 e. RR+ ) |
13 |
11 12
|
ax-mp |
|- 9 e. RR+ |
14 |
|
relogbzcl |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ 9 e. RR+ ) -> ( 2 logb 9 ) e. RR ) |
15 |
10 13 14
|
mp2an |
|- ( 2 logb 9 ) e. RR |
16 |
|
cxpcom |
|- ( ( 2 e. RR+ /\ ( 1 / 2 ) e. RR /\ ( 2 logb 9 ) e. RR ) -> ( ( 2 ^c ( 1 / 2 ) ) ^c ( 2 logb 9 ) ) = ( ( 2 ^c ( 2 logb 9 ) ) ^c ( 1 / 2 ) ) ) |
17 |
6 7 15 16
|
mp3an |
|- ( ( 2 ^c ( 1 / 2 ) ) ^c ( 2 logb 9 ) ) = ( ( 2 ^c ( 2 logb 9 ) ) ^c ( 1 / 2 ) ) |
18 |
15
|
recni |
|- ( 2 logb 9 ) e. CC |
19 |
|
cxpcl |
|- ( ( 2 e. CC /\ ( 2 logb 9 ) e. CC ) -> ( 2 ^c ( 2 logb 9 ) ) e. CC ) |
20 |
1 18 19
|
mp2an |
|- ( 2 ^c ( 2 logb 9 ) ) e. CC |
21 |
|
cxpsqrt |
|- ( ( 2 ^c ( 2 logb 9 ) ) e. CC -> ( ( 2 ^c ( 2 logb 9 ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 2 ^c ( 2 logb 9 ) ) ) ) |
22 |
20 21
|
ax-mp |
|- ( ( 2 ^c ( 2 logb 9 ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 2 ^c ( 2 logb 9 ) ) ) |
23 |
5 17 22
|
3eqtri |
|- ( ( sqrt ` 2 ) ^c ( 2 logb 9 ) ) = ( sqrt ` ( 2 ^c ( 2 logb 9 ) ) ) |
24 |
|
2ne0 |
|- 2 =/= 0 |
25 |
|
1ne2 |
|- 1 =/= 2 |
26 |
25
|
necomi |
|- 2 =/= 1 |
27 |
|
eldifpr |
|- ( 2 e. ( CC \ { 0 , 1 } ) <-> ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) ) |
28 |
1 24 26 27
|
mpbir3an |
|- 2 e. ( CC \ { 0 , 1 } ) |
29 |
|
9cn |
|- 9 e. CC |
30 |
|
9re |
|- 9 e. RR |
31 |
|
9pos |
|- 0 < 9 |
32 |
30 31
|
gt0ne0ii |
|- 9 =/= 0 |
33 |
|
eldifsn |
|- ( 9 e. ( CC \ { 0 } ) <-> ( 9 e. CC /\ 9 =/= 0 ) ) |
34 |
29 32 33
|
mpbir2an |
|- 9 e. ( CC \ { 0 } ) |
35 |
|
cxplogb |
|- ( ( 2 e. ( CC \ { 0 , 1 } ) /\ 9 e. ( CC \ { 0 } ) ) -> ( 2 ^c ( 2 logb 9 ) ) = 9 ) |
36 |
28 34 35
|
mp2an |
|- ( 2 ^c ( 2 logb 9 ) ) = 9 |
37 |
36
|
fveq2i |
|- ( sqrt ` ( 2 ^c ( 2 logb 9 ) ) ) = ( sqrt ` 9 ) |
38 |
|
sqrt9 |
|- ( sqrt ` 9 ) = 3 |
39 |
23 37 38
|
3eqtri |
|- ( ( sqrt ` 2 ) ^c ( 2 logb 9 ) ) = 3 |