Step |
Hyp |
Ref |
Expression |
1 |
|
sqrt1 |
|- ( sqrt ` 1 ) = 1 |
2 |
|
1lt2 |
|- 1 < 2 |
3 |
|
1re |
|- 1 e. RR |
4 |
|
0le1 |
|- 0 <_ 1 |
5 |
|
2re |
|- 2 e. RR |
6 |
|
0le2 |
|- 0 <_ 2 |
7 |
|
sqrtlt |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( 2 e. RR /\ 0 <_ 2 ) ) -> ( 1 < 2 <-> ( sqrt ` 1 ) < ( sqrt ` 2 ) ) ) |
8 |
3 4 5 6 7
|
mp4an |
|- ( 1 < 2 <-> ( sqrt ` 1 ) < ( sqrt ` 2 ) ) |
9 |
2 8
|
mpbi |
|- ( sqrt ` 1 ) < ( sqrt ` 2 ) |
10 |
1 9
|
eqbrtrri |
|- 1 < ( sqrt ` 2 ) |
11 |
|
2lt4 |
|- 2 < 4 |
12 |
|
4re |
|- 4 e. RR |
13 |
|
0re |
|- 0 e. RR |
14 |
|
4pos |
|- 0 < 4 |
15 |
13 12 14
|
ltleii |
|- 0 <_ 4 |
16 |
|
sqrtlt |
|- ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( 4 e. RR /\ 0 <_ 4 ) ) -> ( 2 < 4 <-> ( sqrt ` 2 ) < ( sqrt ` 4 ) ) ) |
17 |
5 6 12 15 16
|
mp4an |
|- ( 2 < 4 <-> ( sqrt ` 2 ) < ( sqrt ` 4 ) ) |
18 |
11 17
|
mpbi |
|- ( sqrt ` 2 ) < ( sqrt ` 4 ) |
19 |
|
sqrt4 |
|- ( sqrt ` 4 ) = 2 |
20 |
18 19
|
breqtri |
|- ( sqrt ` 2 ) < 2 |
21 |
10 20
|
pm3.2i |
|- ( 1 < ( sqrt ` 2 ) /\ ( sqrt ` 2 ) < 2 ) |