| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrt1 |  |-  ( sqrt ` 1 ) = 1 | 
						
							| 2 |  | 1lt2 |  |-  1 < 2 | 
						
							| 3 |  | 1re |  |-  1 e. RR | 
						
							| 4 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 5 |  | 2re |  |-  2 e. RR | 
						
							| 6 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 7 |  | sqrtlt |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( 2 e. RR /\ 0 <_ 2 ) ) -> ( 1 < 2 <-> ( sqrt ` 1 ) < ( sqrt ` 2 ) ) ) | 
						
							| 8 | 3 4 5 6 7 | mp4an |  |-  ( 1 < 2 <-> ( sqrt ` 1 ) < ( sqrt ` 2 ) ) | 
						
							| 9 | 2 8 | mpbi |  |-  ( sqrt ` 1 ) < ( sqrt ` 2 ) | 
						
							| 10 | 1 9 | eqbrtrri |  |-  1 < ( sqrt ` 2 ) | 
						
							| 11 |  | 2lt4 |  |-  2 < 4 | 
						
							| 12 |  | 4re |  |-  4 e. RR | 
						
							| 13 |  | 0re |  |-  0 e. RR | 
						
							| 14 |  | 4pos |  |-  0 < 4 | 
						
							| 15 | 13 12 14 | ltleii |  |-  0 <_ 4 | 
						
							| 16 |  | sqrtlt |  |-  ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( 4 e. RR /\ 0 <_ 4 ) ) -> ( 2 < 4 <-> ( sqrt ` 2 ) < ( sqrt ` 4 ) ) ) | 
						
							| 17 | 5 6 12 15 16 | mp4an |  |-  ( 2 < 4 <-> ( sqrt ` 2 ) < ( sqrt ` 4 ) ) | 
						
							| 18 | 11 17 | mpbi |  |-  ( sqrt ` 2 ) < ( sqrt ` 4 ) | 
						
							| 19 |  | sqrt4 |  |-  ( sqrt ` 4 ) = 2 | 
						
							| 20 | 18 19 | breqtri |  |-  ( sqrt ` 2 ) < 2 | 
						
							| 21 | 10 20 | pm3.2i |  |-  ( 1 < ( sqrt ` 2 ) /\ ( sqrt ` 2 ) < 2 ) |