Step |
Hyp |
Ref |
Expression |
1 |
|
sqrt2irrlem.1 |
|- ( ph -> A e. ZZ ) |
2 |
|
sqrt2irrlem.2 |
|- ( ph -> B e. NN ) |
3 |
|
sqrt2irrlem.3 |
|- ( ph -> ( sqrt ` 2 ) = ( A / B ) ) |
4 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
5 |
4
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` 2 ) ^ 2 ) = 2 ) |
6 |
3
|
oveq1d |
|- ( ph -> ( ( sqrt ` 2 ) ^ 2 ) = ( ( A / B ) ^ 2 ) ) |
7 |
5 6
|
eqtr3d |
|- ( ph -> 2 = ( ( A / B ) ^ 2 ) ) |
8 |
1
|
zcnd |
|- ( ph -> A e. CC ) |
9 |
2
|
nncnd |
|- ( ph -> B e. CC ) |
10 |
2
|
nnne0d |
|- ( ph -> B =/= 0 ) |
11 |
8 9 10
|
sqdivd |
|- ( ph -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) ) |
12 |
7 11
|
eqtrd |
|- ( ph -> 2 = ( ( A ^ 2 ) / ( B ^ 2 ) ) ) |
13 |
12
|
oveq1d |
|- ( ph -> ( 2 x. ( B ^ 2 ) ) = ( ( ( A ^ 2 ) / ( B ^ 2 ) ) x. ( B ^ 2 ) ) ) |
14 |
8
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
15 |
2
|
nnsqcld |
|- ( ph -> ( B ^ 2 ) e. NN ) |
16 |
15
|
nncnd |
|- ( ph -> ( B ^ 2 ) e. CC ) |
17 |
15
|
nnne0d |
|- ( ph -> ( B ^ 2 ) =/= 0 ) |
18 |
14 16 17
|
divcan1d |
|- ( ph -> ( ( ( A ^ 2 ) / ( B ^ 2 ) ) x. ( B ^ 2 ) ) = ( A ^ 2 ) ) |
19 |
13 18
|
eqtrd |
|- ( ph -> ( 2 x. ( B ^ 2 ) ) = ( A ^ 2 ) ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( 2 x. ( B ^ 2 ) ) / 2 ) = ( ( A ^ 2 ) / 2 ) ) |
21 |
|
2ne0 |
|- 2 =/= 0 |
22 |
21
|
a1i |
|- ( ph -> 2 =/= 0 ) |
23 |
16 4 22
|
divcan3d |
|- ( ph -> ( ( 2 x. ( B ^ 2 ) ) / 2 ) = ( B ^ 2 ) ) |
24 |
20 23
|
eqtr3d |
|- ( ph -> ( ( A ^ 2 ) / 2 ) = ( B ^ 2 ) ) |
25 |
24 15
|
eqeltrd |
|- ( ph -> ( ( A ^ 2 ) / 2 ) e. NN ) |
26 |
25
|
nnzd |
|- ( ph -> ( ( A ^ 2 ) / 2 ) e. ZZ ) |
27 |
|
zesq |
|- ( A e. ZZ -> ( ( A / 2 ) e. ZZ <-> ( ( A ^ 2 ) / 2 ) e. ZZ ) ) |
28 |
1 27
|
syl |
|- ( ph -> ( ( A / 2 ) e. ZZ <-> ( ( A ^ 2 ) / 2 ) e. ZZ ) ) |
29 |
26 28
|
mpbird |
|- ( ph -> ( A / 2 ) e. ZZ ) |
30 |
4
|
sqvald |
|- ( ph -> ( 2 ^ 2 ) = ( 2 x. 2 ) ) |
31 |
30
|
oveq2d |
|- ( ph -> ( ( A ^ 2 ) / ( 2 ^ 2 ) ) = ( ( A ^ 2 ) / ( 2 x. 2 ) ) ) |
32 |
8 4 22
|
sqdivd |
|- ( ph -> ( ( A / 2 ) ^ 2 ) = ( ( A ^ 2 ) / ( 2 ^ 2 ) ) ) |
33 |
14 4 4 22 22
|
divdiv1d |
|- ( ph -> ( ( ( A ^ 2 ) / 2 ) / 2 ) = ( ( A ^ 2 ) / ( 2 x. 2 ) ) ) |
34 |
31 32 33
|
3eqtr4d |
|- ( ph -> ( ( A / 2 ) ^ 2 ) = ( ( ( A ^ 2 ) / 2 ) / 2 ) ) |
35 |
24
|
oveq1d |
|- ( ph -> ( ( ( A ^ 2 ) / 2 ) / 2 ) = ( ( B ^ 2 ) / 2 ) ) |
36 |
34 35
|
eqtrd |
|- ( ph -> ( ( A / 2 ) ^ 2 ) = ( ( B ^ 2 ) / 2 ) ) |
37 |
|
zsqcl |
|- ( ( A / 2 ) e. ZZ -> ( ( A / 2 ) ^ 2 ) e. ZZ ) |
38 |
29 37
|
syl |
|- ( ph -> ( ( A / 2 ) ^ 2 ) e. ZZ ) |
39 |
36 38
|
eqeltrrd |
|- ( ph -> ( ( B ^ 2 ) / 2 ) e. ZZ ) |
40 |
15
|
nnrpd |
|- ( ph -> ( B ^ 2 ) e. RR+ ) |
41 |
40
|
rphalfcld |
|- ( ph -> ( ( B ^ 2 ) / 2 ) e. RR+ ) |
42 |
41
|
rpgt0d |
|- ( ph -> 0 < ( ( B ^ 2 ) / 2 ) ) |
43 |
|
elnnz |
|- ( ( ( B ^ 2 ) / 2 ) e. NN <-> ( ( ( B ^ 2 ) / 2 ) e. ZZ /\ 0 < ( ( B ^ 2 ) / 2 ) ) ) |
44 |
39 42 43
|
sylanbrc |
|- ( ph -> ( ( B ^ 2 ) / 2 ) e. NN ) |
45 |
|
nnesq |
|- ( B e. NN -> ( ( B / 2 ) e. NN <-> ( ( B ^ 2 ) / 2 ) e. NN ) ) |
46 |
2 45
|
syl |
|- ( ph -> ( ( B / 2 ) e. NN <-> ( ( B ^ 2 ) / 2 ) e. NN ) ) |
47 |
44 46
|
mpbird |
|- ( ph -> ( B / 2 ) e. NN ) |
48 |
29 47
|
jca |
|- ( ph -> ( ( A / 2 ) e. ZZ /\ ( B / 2 ) e. NN ) ) |