Metamath Proof Explorer


Theorem sqrtcl

Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Assertion sqrtcl
|- ( A e. CC -> ( sqrt ` A ) e. CC )

Proof

Step Hyp Ref Expression
1 sqrtval
 |-  ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) )
2 sqreu
 |-  ( A e. CC -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) )
3 riotacl
 |-  ( E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) e. CC )
4 2 3 syl
 |-  ( A e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) e. CC )
5 1 4 eqeltrd
 |-  ( A e. CC -> ( sqrt ` A ) e. CC )