Step |
Hyp |
Ref |
Expression |
1 |
|
sqrcn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
2 |
|
sqrtf |
|- sqrt : CC --> CC |
3 |
2
|
a1i |
|- ( T. -> sqrt : CC --> CC ) |
4 |
3
|
feqmptd |
|- ( T. -> sqrt = ( x e. CC |-> ( sqrt ` x ) ) ) |
5 |
4
|
reseq1d |
|- ( T. -> ( sqrt |` D ) = ( ( x e. CC |-> ( sqrt ` x ) ) |` D ) ) |
6 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
7 |
1 6
|
eqsstri |
|- D C_ CC |
8 |
|
resmpt |
|- ( D C_ CC -> ( ( x e. CC |-> ( sqrt ` x ) ) |` D ) = ( x e. D |-> ( sqrt ` x ) ) ) |
9 |
7 8
|
mp1i |
|- ( T. -> ( ( x e. CC |-> ( sqrt ` x ) ) |` D ) = ( x e. D |-> ( sqrt ` x ) ) ) |
10 |
7
|
sseli |
|- ( x e. D -> x e. CC ) |
11 |
10
|
adantl |
|- ( ( T. /\ x e. D ) -> x e. CC ) |
12 |
|
cxpsqrt |
|- ( x e. CC -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
13 |
11 12
|
syl |
|- ( ( T. /\ x e. D ) -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
14 |
13
|
eqcomd |
|- ( ( T. /\ x e. D ) -> ( sqrt ` x ) = ( x ^c ( 1 / 2 ) ) ) |
15 |
14
|
mpteq2dva |
|- ( T. -> ( x e. D |-> ( sqrt ` x ) ) = ( x e. D |-> ( x ^c ( 1 / 2 ) ) ) ) |
16 |
5 9 15
|
3eqtrd |
|- ( T. -> ( sqrt |` D ) = ( x e. D |-> ( x ^c ( 1 / 2 ) ) ) ) |
17 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
18 |
17
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
19 |
18
|
a1i |
|- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
20 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ D C_ CC ) -> ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) ) |
21 |
19 7 20
|
sylancl |
|- ( T. -> ( ( TopOpen ` CCfld ) |`t D ) e. ( TopOn ` D ) ) |
22 |
21
|
cnmptid |
|- ( T. -> ( x e. D |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( ( TopOpen ` CCfld ) |`t D ) ) ) |
23 |
|
ax-1cn |
|- 1 e. CC |
24 |
|
halfcl |
|- ( 1 e. CC -> ( 1 / 2 ) e. CC ) |
25 |
23 24
|
mp1i |
|- ( T. -> ( 1 / 2 ) e. CC ) |
26 |
21 19 25
|
cnmptc |
|- ( T. -> ( x e. D |-> ( 1 / 2 ) ) e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
27 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t D ) = ( ( TopOpen ` CCfld ) |`t D ) |
28 |
1 17 27
|
cxpcn |
|- ( y e. D , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t D ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
29 |
28
|
a1i |
|- ( T. -> ( y e. D , z e. CC |-> ( y ^c z ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t D ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
30 |
|
oveq12 |
|- ( ( y = x /\ z = ( 1 / 2 ) ) -> ( y ^c z ) = ( x ^c ( 1 / 2 ) ) ) |
31 |
21 22 26 21 19 29 30
|
cnmpt12 |
|- ( T. -> ( x e. D |-> ( x ^c ( 1 / 2 ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
32 |
|
ssid |
|- CC C_ CC |
33 |
18
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
34 |
17 27 33
|
cncfcn |
|- ( ( D C_ CC /\ CC C_ CC ) -> ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) ) |
35 |
7 32 34
|
mp2an |
|- ( D -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t D ) Cn ( TopOpen ` CCfld ) ) |
36 |
31 35
|
eleqtrrdi |
|- ( T. -> ( x e. D |-> ( x ^c ( 1 / 2 ) ) ) e. ( D -cn-> CC ) ) |
37 |
16 36
|
eqeltrd |
|- ( T. -> ( sqrt |` D ) e. ( D -cn-> CC ) ) |
38 |
37
|
mptru |
|- ( sqrt |` D ) e. ( D -cn-> CC ) |