Metamath Proof Explorer


Theorem sqrtdivd

Description: Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1
|- ( ph -> A e. RR )
resqrcld.2
|- ( ph -> 0 <_ A )
sqrdivd.3
|- ( ph -> B e. RR+ )
Assertion sqrtdivd
|- ( ph -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) )

Proof

Step Hyp Ref Expression
1 resqrcld.1
 |-  ( ph -> A e. RR )
2 resqrcld.2
 |-  ( ph -> 0 <_ A )
3 sqrdivd.3
 |-  ( ph -> B e. RR+ )
4 sqrtdiv
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) )
5 1 2 3 4 syl21anc
 |-  ( ph -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) )