Description: Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtf | |- sqrt : CC --> CC | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | riotaex | |- ( iota_ y e. CC ( ( y ^ 2 ) = x /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) e. _V | |
| 2 | df-sqrt | |- sqrt = ( x e. CC |-> ( iota_ y e. CC ( ( y ^ 2 ) = x /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) | |
| 3 | 1 2 | fnmpti | |- sqrt Fn CC | 
| 4 | sqrtcl | |- ( x e. CC -> ( sqrt ` x ) e. CC ) | |
| 5 | 4 | rgen | |- A. x e. CC ( sqrt ` x ) e. CC | 
| 6 | ffnfv | |- ( sqrt : CC --> CC <-> ( sqrt Fn CC /\ A. x e. CC ( sqrt ` x ) e. CC ) ) | |
| 7 | 3 5 6 | mpbir2an | |- sqrt : CC --> CC |