| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
| 3 |
1 2
|
mpan |
|- ( A e. RR -> ( 0 < A -> 0 <_ A ) ) |
| 4 |
3
|
imp |
|- ( ( A e. RR /\ 0 < A ) -> 0 <_ A ) |
| 5 |
|
resqrtcl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
| 6 |
4 5
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( sqrt ` A ) e. RR ) |
| 7 |
|
sqrtge0 |
|- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( sqrt ` A ) ) |
| 8 |
4 7
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> 0 <_ ( sqrt ` A ) ) |
| 9 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
| 10 |
|
sq0i |
|- ( ( sqrt ` A ) = 0 -> ( ( sqrt ` A ) ^ 2 ) = 0 ) |
| 11 |
|
resqrtth |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 12 |
4 11
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 13 |
12
|
eqeq1d |
|- ( ( A e. RR /\ 0 < A ) -> ( ( ( sqrt ` A ) ^ 2 ) = 0 <-> A = 0 ) ) |
| 14 |
10 13
|
imbitrid |
|- ( ( A e. RR /\ 0 < A ) -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) |
| 15 |
14
|
necon3d |
|- ( ( A e. RR /\ 0 < A ) -> ( A =/= 0 -> ( sqrt ` A ) =/= 0 ) ) |
| 16 |
9 15
|
mpd |
|- ( ( A e. RR /\ 0 < A ) -> ( sqrt ` A ) =/= 0 ) |
| 17 |
6 8 16
|
ne0gt0d |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( sqrt ` A ) ) |