Metamath Proof Explorer


Theorem sqrtgt0ii

Description: The square root of a positive real is positive. (Contributed by NM, 26-May-1999) (Revised by Mario Carneiro, 6-Sep-2013)

Ref Expression
Hypotheses sqrtthi.1
|- A e. RR
sqrpclii.2
|- 0 < A
Assertion sqrtgt0ii
|- 0 < ( sqrt ` A )

Proof

Step Hyp Ref Expression
1 sqrtthi.1
 |-  A e. RR
2 sqrpclii.2
 |-  0 < A
3 1 sqrtgt0i
 |-  ( 0 < A -> 0 < ( sqrt ` A ) )
4 2 3 ax-mp
 |-  0 < ( sqrt ` A )