Description: Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqrcld.1 | |- ( ph -> A e. RR ) | |
| resqrcld.2 | |- ( ph -> 0 <_ A ) | ||
| sqr11d.3 | |- ( ph -> B e. RR ) | ||
| sqr11d.4 | |- ( ph -> 0 <_ B ) | ||
| Assertion | sqrtltd | |- ( ph -> ( A < B <-> ( sqrt ` A ) < ( sqrt ` B ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resqrcld.1 | |- ( ph -> A e. RR ) | |
| 2 | resqrcld.2 | |- ( ph -> 0 <_ A ) | |
| 3 | sqr11d.3 | |- ( ph -> B e. RR ) | |
| 4 | sqr11d.4 | |- ( ph -> 0 <_ B ) | |
| 5 | sqrtlt | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( sqrt ` A ) < ( sqrt ` B ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( A < B <-> ( sqrt ` A ) < ( sqrt ` B ) ) ) |