Description: Square root of square. (Contributed by NM, 2-Aug-1999) (Revised by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | sqrtmsq | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A x. A ) ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) |
|
2 | 1 | recnd | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
3 | 2 | sqvald | |- ( ( A e. RR /\ 0 <_ A ) -> ( A ^ 2 ) = ( A x. A ) ) |
4 | 3 | fveq2d | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` ( A x. A ) ) ) |
5 | sqrtsq | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
|
6 | 4 5 | eqtr3d | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A x. A ) ) = A ) |