Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtthi.1 |
|- A e. RR |
2 |
|
sqr11.1 |
|- B e. RR |
3 |
|
sqrtsq2 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
4 |
2 3
|
mpanr1 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
5 |
1 4
|
mpanl1 |
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
6 |
2
|
recni |
|- B e. CC |
7 |
6
|
sqvali |
|- ( B ^ 2 ) = ( B x. B ) |
8 |
7
|
eqeq2i |
|- ( A = ( B ^ 2 ) <-> A = ( B x. B ) ) |
9 |
5 8
|
bitrdi |
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqrt ` A ) = B <-> A = ( B x. B ) ) ) |