Metamath Proof Explorer


Theorem sqrtmsqi

Description: Square root of square. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis sqrtthi.1
|- A e. RR
Assertion sqrtmsqi
|- ( 0 <_ A -> ( sqrt ` ( A x. A ) ) = A )

Proof

Step Hyp Ref Expression
1 sqrtthi.1
 |-  A e. RR
2 sqrtmsq
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A x. A ) ) = A )
3 1 2 mpan
 |-  ( 0 <_ A -> ( sqrt ` ( A x. A ) ) = A )