Metamath Proof Explorer


Theorem sqrtmuli

Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999)

Ref Expression
Hypotheses sqrtthi.1
|- A e. RR
sqr11.1
|- B e. RR
Assertion sqrtmuli
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) )

Proof

Step Hyp Ref Expression
1 sqrtthi.1
 |-  A e. RR
2 sqr11.1
 |-  B e. RR
3 sqrtmul
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) )
4 2 3 mpanr1
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ B ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) )
5 1 4 mpanl1
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) )