Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sqrtthi.1 | |- A e. RR |
|
sqr11.1 | |- B e. RR |
||
Assertion | sqrtmuli | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtthi.1 | |- A e. RR |
|
2 | sqr11.1 | |- B e. RR |
|
3 | sqrtmul | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) ) |
|
4 | 2 3 | mpanr1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ B ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) ) |
5 | 1 4 | mpanl1 | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) ) |