Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqrtthi.1 | |- A e. RR |
|
| sqr11.1 | |- B e. RR |
||
| sqrmuli.1 | |- 0 <_ A |
||
| sqrmuli.2 | |- 0 <_ B |
||
| Assertion | sqrtmulii | |- ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtthi.1 | |- A e. RR |
|
| 2 | sqr11.1 | |- B e. RR |
|
| 3 | sqrmuli.1 | |- 0 <_ A |
|
| 4 | sqrmuli.2 | |- 0 <_ B |
|
| 5 | 1 2 | sqrtmuli | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) ) |
| 6 | 3 4 5 | mp2an | |- ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) |