Metamath Proof Explorer


Theorem sqrtmulii

Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999)

Ref Expression
Hypotheses sqrtthi.1
|- A e. RR
sqr11.1
|- B e. RR
sqrmuli.1
|- 0 <_ A
sqrmuli.2
|- 0 <_ B
Assertion sqrtmulii
|- ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) )

Proof

Step Hyp Ref Expression
1 sqrtthi.1
 |-  A e. RR
2 sqr11.1
 |-  B e. RR
3 sqrmuli.1
 |-  0 <_ A
4 sqrmuli.2
 |-  0 <_ B
5 1 2 sqrtmuli
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) ) )
6 3 4 5 mp2an
 |-  ( sqrt ` ( A x. B ) ) = ( ( sqrt ` A ) x. ( sqrt ` B ) )