Description: The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqrtthi.1 | |- A e. RR |
|
| sqrpclii.2 | |- 0 < A |
||
| Assertion | sqrtpclii | |- ( sqrt ` A ) e. RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtthi.1 | |- A e. RR |
|
| 2 | sqrpclii.2 | |- 0 < A |
|
| 3 | 0re | |- 0 e. RR |
|
| 4 | 3 1 2 | ltleii | |- 0 <_ A |
| 5 | 1 | sqrtcli | |- ( 0 <_ A -> ( sqrt ` A ) e. RR ) |
| 6 | 4 5 | ax-mp | |- ( sqrt ` A ) e. RR |