Metamath Proof Explorer


Theorem sqrtrege0d

Description: The real part of the square root function is nonnegative. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1
|- ( ph -> A e. CC )
Assertion sqrtrege0d
|- ( ph -> 0 <_ ( Re ` ( sqrt ` A ) ) )

Proof

Step Hyp Ref Expression
1 abscld.1
 |-  ( ph -> A e. CC )
2 sqrtrege0
 |-  ( A e. CC -> 0 <_ ( Re ` ( sqrt ` A ) ) )
3 1 2 syl
 |-  ( ph -> 0 <_ ( Re ` ( sqrt ` A ) ) )