Description: Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqrcld.1 | |- ( ph -> A e. RR ) |
|
resqrcld.2 | |- ( ph -> 0 <_ A ) |
||
sqr11d.3 | |- ( ph -> B e. RR ) |
||
sqr11d.4 | |- ( ph -> 0 <_ B ) |
||
Assertion | sqrtsq2d | |- ( ph -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrcld.1 | |- ( ph -> A e. RR ) |
|
2 | resqrcld.2 | |- ( ph -> 0 <_ A ) |
|
3 | sqr11d.3 | |- ( ph -> B e. RR ) |
|
4 | sqr11d.4 | |- ( ph -> 0 <_ B ) |
|
5 | sqrtsq2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
|
6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |