Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtval |
|- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
2 |
1
|
eqcomd |
|- ( A e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) |
3 |
|
sqrtcl |
|- ( A e. CC -> ( sqrt ` A ) e. CC ) |
4 |
|
sqreu |
|- ( A e. CC -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
5 |
|
oveq1 |
|- ( x = ( sqrt ` A ) -> ( x ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) ) |
6 |
5
|
eqeq1d |
|- ( x = ( sqrt ` A ) -> ( ( x ^ 2 ) = A <-> ( ( sqrt ` A ) ^ 2 ) = A ) ) |
7 |
|
fveq2 |
|- ( x = ( sqrt ` A ) -> ( Re ` x ) = ( Re ` ( sqrt ` A ) ) ) |
8 |
7
|
breq2d |
|- ( x = ( sqrt ` A ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( sqrt ` A ) ) ) ) |
9 |
|
oveq2 |
|- ( x = ( sqrt ` A ) -> ( _i x. x ) = ( _i x. ( sqrt ` A ) ) ) |
10 |
|
neleq1 |
|- ( ( _i x. x ) = ( _i x. ( sqrt ` A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
11 |
9 10
|
syl |
|- ( x = ( sqrt ` A ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
12 |
6 8 11
|
3anbi123d |
|- ( x = ( sqrt ` A ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) ) |
13 |
12
|
riota2 |
|- ( ( ( sqrt ` A ) e. CC /\ E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) ) |
14 |
3 4 13
|
syl2anc |
|- ( A e. CC -> ( ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) ) |
15 |
2 14
|
mpbird |
|- ( A e. CC -> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |