Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|- ( y = A -> ( ( x ^ 2 ) = y <-> ( x ^ 2 ) = A ) ) |
2 |
1
|
3anbi1d |
|- ( y = A -> ( ( ( x ^ 2 ) = y /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
3 |
2
|
riotabidv |
|- ( y = A -> ( iota_ x e. CC ( ( x ^ 2 ) = y /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
4 |
|
df-sqrt |
|- sqrt = ( y e. CC |-> ( iota_ x e. CC ( ( x ^ 2 ) = y /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
5 |
|
riotaex |
|- ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) e. _V |
6 |
3 4 5
|
fvmpt |
|- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |