Description: Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sqsubswap | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( B - A ) ^ 2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
2 | sqneg | |- ( ( A - B ) e. CC -> ( -u ( A - B ) ^ 2 ) = ( ( A - B ) ^ 2 ) ) |
|
3 | 1 2 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( -u ( A - B ) ^ 2 ) = ( ( A - B ) ^ 2 ) ) |
4 | negsubdi2 | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) ) |
|
5 | 4 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( -u ( A - B ) ^ 2 ) = ( ( B - A ) ^ 2 ) ) |
6 | 3 5 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( B - A ) ^ 2 ) ) |