| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
leloe |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 3 |
1 2
|
mpan |
|- ( A e. RR -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 4 |
|
breq2 |
|- ( x = A -> ( 0 < x <-> 0 < A ) ) |
| 5 |
|
breq2 |
|- ( x = A -> ( A < x <-> A < A ) ) |
| 6 |
4 5
|
imbi12d |
|- ( x = A -> ( ( 0 < x -> A < x ) <-> ( 0 < A -> A < A ) ) ) |
| 7 |
6
|
rspcv |
|- ( A e. RR -> ( A. x e. RR ( 0 < x -> A < x ) -> ( 0 < A -> A < A ) ) ) |
| 8 |
|
ltnr |
|- ( A e. RR -> -. A < A ) |
| 9 |
8
|
pm2.21d |
|- ( A e. RR -> ( A < A -> A = 0 ) ) |
| 10 |
9
|
com12 |
|- ( A < A -> ( A e. RR -> A = 0 ) ) |
| 11 |
10
|
imim2i |
|- ( ( 0 < A -> A < A ) -> ( 0 < A -> ( A e. RR -> A = 0 ) ) ) |
| 12 |
11
|
com13 |
|- ( A e. RR -> ( 0 < A -> ( ( 0 < A -> A < A ) -> A = 0 ) ) ) |
| 13 |
7 12
|
syl5d |
|- ( A e. RR -> ( 0 < A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) |
| 14 |
|
ax-1 |
|- ( A = 0 -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) |
| 15 |
14
|
eqcoms |
|- ( 0 = A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) |
| 16 |
15
|
a1i |
|- ( A e. RR -> ( 0 = A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) |
| 17 |
13 16
|
jaod |
|- ( A e. RR -> ( ( 0 < A \/ 0 = A ) -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) |
| 18 |
3 17
|
sylbid |
|- ( A e. RR -> ( 0 <_ A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) |
| 19 |
18
|
3imp |
|- ( ( A e. RR /\ 0 <_ A /\ A. x e. RR ( 0 < x -> A < x ) ) -> A = 0 ) |