Metamath Proof Explorer


Theorem sqval

Description: Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004)

Ref Expression
Assertion sqval
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) )

Proof

Step Hyp Ref Expression
1 df-2
 |-  2 = ( 1 + 1 )
2 1 oveq2i
 |-  ( A ^ 2 ) = ( A ^ ( 1 + 1 ) )
3 1nn0
 |-  1 e. NN0
4 expp1
 |-  ( ( A e. CC /\ 1 e. NN0 ) -> ( A ^ ( 1 + 1 ) ) = ( ( A ^ 1 ) x. A ) )
5 3 4 mpan2
 |-  ( A e. CC -> ( A ^ ( 1 + 1 ) ) = ( ( A ^ 1 ) x. A ) )
6 2 5 syl5eq
 |-  ( A e. CC -> ( A ^ 2 ) = ( ( A ^ 1 ) x. A ) )
7 exp1
 |-  ( A e. CC -> ( A ^ 1 ) = A )
8 7 oveq1d
 |-  ( A e. CC -> ( ( A ^ 1 ) x. A ) = ( A x. A ) )
9 6 8 eqtrd
 |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) )