Metamath Proof Explorer


Theorem sqvald

Description: Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis expcld.1
|- ( ph -> A e. CC )
Assertion sqvald
|- ( ph -> ( A ^ 2 ) = ( A x. A ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 sqval
 |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) )
3 1 2 syl
 |-  ( ph -> ( A ^ 2 ) = ( A x. A ) )