Step |
Hyp |
Ref |
Expression |
1 |
|
sqwvfoura.t |
|- T = ( 2 x. _pi ) |
2 |
|
sqwvfoura.f |
|- F = ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
3 |
|
sqwvfoura.n |
|- ( ph -> N e. NN0 ) |
4 |
|
pire |
|- _pi e. RR |
5 |
4
|
renegcli |
|- -u _pi e. RR |
6 |
5
|
a1i |
|- ( ph -> -u _pi e. RR ) |
7 |
4
|
a1i |
|- ( ph -> _pi e. RR ) |
8 |
|
0re |
|- 0 e. RR |
9 |
|
negpilt0 |
|- -u _pi < 0 |
10 |
5 8 9
|
ltleii |
|- -u _pi <_ 0 |
11 |
|
pipos |
|- 0 < _pi |
12 |
8 4 11
|
ltleii |
|- 0 <_ _pi |
13 |
5 4
|
elicc2i |
|- ( 0 e. ( -u _pi [,] _pi ) <-> ( 0 e. RR /\ -u _pi <_ 0 /\ 0 <_ _pi ) ) |
14 |
8 10 12 13
|
mpbir3an |
|- 0 e. ( -u _pi [,] _pi ) |
15 |
14
|
a1i |
|- ( ph -> 0 e. ( -u _pi [,] _pi ) ) |
16 |
|
1red |
|- ( x e. RR -> 1 e. RR ) |
17 |
16
|
renegcld |
|- ( x e. RR -> -u 1 e. RR ) |
18 |
16 17
|
ifcld |
|- ( x e. RR -> if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR ) |
19 |
18
|
adantl |
|- ( ( ph /\ x e. RR ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR ) |
20 |
19 2
|
fmptd |
|- ( ph -> F : RR --> RR ) |
21 |
20
|
adantr |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> F : RR --> RR ) |
22 |
|
elioore |
|- ( x e. ( -u _pi (,) _pi ) -> x e. RR ) |
23 |
22
|
adantl |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> x e. RR ) |
24 |
21 23
|
ffvelrnd |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( F ` x ) e. RR ) |
25 |
3
|
nn0red |
|- ( ph -> N e. RR ) |
26 |
25
|
adantr |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> N e. RR ) |
27 |
26 23
|
remulcld |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( N x. x ) e. RR ) |
28 |
27
|
recoscld |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( cos ` ( N x. x ) ) e. RR ) |
29 |
24 28
|
remulcld |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) e. RR ) |
30 |
29
|
recnd |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) e. CC ) |
31 |
|
elioore |
|- ( x e. ( -u _pi (,) 0 ) -> x e. RR ) |
32 |
2
|
fvmpt2 |
|- ( ( x e. RR /\ if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
33 |
31 18 32
|
syl2anc2 |
|- ( x e. ( -u _pi (,) 0 ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
34 |
4
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> _pi e. RR ) |
35 |
|
2rp |
|- 2 e. RR+ |
36 |
|
pirp |
|- _pi e. RR+ |
37 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
38 |
35 36 37
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
39 |
1 38
|
eqeltri |
|- T e. RR+ |
40 |
39
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> T e. RR+ ) |
41 |
31 40
|
modcld |
|- ( x e. ( -u _pi (,) 0 ) -> ( x mod T ) e. RR ) |
42 |
|
picn |
|- _pi e. CC |
43 |
42
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
44 |
1 43
|
eqtri |
|- T = ( _pi + _pi ) |
45 |
44
|
oveq2i |
|- ( -u _pi + T ) = ( -u _pi + ( _pi + _pi ) ) |
46 |
5
|
recni |
|- -u _pi e. CC |
47 |
46 42 42
|
addassi |
|- ( ( -u _pi + _pi ) + _pi ) = ( -u _pi + ( _pi + _pi ) ) |
48 |
42
|
negidi |
|- ( _pi + -u _pi ) = 0 |
49 |
42 46 48
|
addcomli |
|- ( -u _pi + _pi ) = 0 |
50 |
49
|
oveq1i |
|- ( ( -u _pi + _pi ) + _pi ) = ( 0 + _pi ) |
51 |
42
|
addid2i |
|- ( 0 + _pi ) = _pi |
52 |
50 51
|
eqtri |
|- ( ( -u _pi + _pi ) + _pi ) = _pi |
53 |
45 47 52
|
3eqtr2ri |
|- _pi = ( -u _pi + T ) |
54 |
5
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> -u _pi e. RR ) |
55 |
|
2re |
|- 2 e. RR |
56 |
55 4
|
remulcli |
|- ( 2 x. _pi ) e. RR |
57 |
1 56
|
eqeltri |
|- T e. RR |
58 |
57
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> T e. RR ) |
59 |
5
|
rexri |
|- -u _pi e. RR* |
60 |
59
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> -u _pi e. RR* ) |
61 |
|
0red |
|- ( x e. ( -u _pi (,) 0 ) -> 0 e. RR ) |
62 |
61
|
rexrd |
|- ( x e. ( -u _pi (,) 0 ) -> 0 e. RR* ) |
63 |
|
id |
|- ( x e. ( -u _pi (,) 0 ) -> x e. ( -u _pi (,) 0 ) ) |
64 |
|
ioogtlb |
|- ( ( -u _pi e. RR* /\ 0 e. RR* /\ x e. ( -u _pi (,) 0 ) ) -> -u _pi < x ) |
65 |
60 62 63 64
|
syl3anc |
|- ( x e. ( -u _pi (,) 0 ) -> -u _pi < x ) |
66 |
54 31 58 65
|
ltadd1dd |
|- ( x e. ( -u _pi (,) 0 ) -> ( -u _pi + T ) < ( x + T ) ) |
67 |
53 66
|
eqbrtrid |
|- ( x e. ( -u _pi (,) 0 ) -> _pi < ( x + T ) ) |
68 |
57
|
recni |
|- T e. CC |
69 |
68
|
mulid2i |
|- ( 1 x. T ) = T |
70 |
69
|
eqcomi |
|- T = ( 1 x. T ) |
71 |
70
|
oveq2i |
|- ( x + T ) = ( x + ( 1 x. T ) ) |
72 |
71
|
oveq1i |
|- ( ( x + T ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) |
73 |
31 58
|
readdcld |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) e. RR ) |
74 |
11
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> 0 < _pi ) |
75 |
61 34 73 74 67
|
lttrd |
|- ( x e. ( -u _pi (,) 0 ) -> 0 < ( x + T ) ) |
76 |
61 73 75
|
ltled |
|- ( x e. ( -u _pi (,) 0 ) -> 0 <_ ( x + T ) ) |
77 |
|
iooltub |
|- ( ( -u _pi e. RR* /\ 0 e. RR* /\ x e. ( -u _pi (,) 0 ) ) -> x < 0 ) |
78 |
60 62 63 77
|
syl3anc |
|- ( x e. ( -u _pi (,) 0 ) -> x < 0 ) |
79 |
31 61 58 78
|
ltadd1dd |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) < ( 0 + T ) ) |
80 |
68
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> T e. CC ) |
81 |
80
|
addid2d |
|- ( x e. ( -u _pi (,) 0 ) -> ( 0 + T ) = T ) |
82 |
79 81
|
breqtrd |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) < T ) |
83 |
|
modid |
|- ( ( ( ( x + T ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( x + T ) /\ ( x + T ) < T ) ) -> ( ( x + T ) mod T ) = ( x + T ) ) |
84 |
73 40 76 82 83
|
syl22anc |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( x + T ) mod T ) = ( x + T ) ) |
85 |
|
1zzd |
|- ( x e. ( -u _pi (,) 0 ) -> 1 e. ZZ ) |
86 |
|
modcyc |
|- ( ( x e. RR /\ T e. RR+ /\ 1 e. ZZ ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) ) |
87 |
31 40 85 86
|
syl3anc |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) ) |
88 |
72 84 87
|
3eqtr3a |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) = ( x mod T ) ) |
89 |
67 88
|
breqtrd |
|- ( x e. ( -u _pi (,) 0 ) -> _pi < ( x mod T ) ) |
90 |
34 41 89
|
ltnsymd |
|- ( x e. ( -u _pi (,) 0 ) -> -. ( x mod T ) < _pi ) |
91 |
90
|
iffalsed |
|- ( x e. ( -u _pi (,) 0 ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
92 |
33 91
|
eqtrd |
|- ( x e. ( -u _pi (,) 0 ) -> ( F ` x ) = -u 1 ) |
93 |
92
|
oveq1d |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) = ( -u 1 x. ( cos ` ( N x. x ) ) ) ) |
94 |
93
|
adantl |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) = ( -u 1 x. ( cos ` ( N x. x ) ) ) ) |
95 |
94
|
mpteq2dva |
|- ( ph -> ( x e. ( -u _pi (,) 0 ) |-> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) ) = ( x e. ( -u _pi (,) 0 ) |-> ( -u 1 x. ( cos ` ( N x. x ) ) ) ) ) |
96 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
97 |
96
|
negcld |
|- ( ph -> -u 1 e. CC ) |
98 |
25
|
adantr |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> N e. RR ) |
99 |
31
|
adantl |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> x e. RR ) |
100 |
98 99
|
remulcld |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( N x. x ) e. RR ) |
101 |
100
|
recoscld |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( cos ` ( N x. x ) ) e. RR ) |
102 |
|
ioossicc |
|- ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) |
103 |
102
|
a1i |
|- ( ph -> ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) ) |
104 |
|
ioombl |
|- ( -u _pi (,) 0 ) e. dom vol |
105 |
104
|
a1i |
|- ( ph -> ( -u _pi (,) 0 ) e. dom vol ) |
106 |
25
|
adantr |
|- ( ( ph /\ x e. ( -u _pi [,] 0 ) ) -> N e. RR ) |
107 |
|
iccssre |
|- ( ( -u _pi e. RR /\ 0 e. RR ) -> ( -u _pi [,] 0 ) C_ RR ) |
108 |
5 8 107
|
mp2an |
|- ( -u _pi [,] 0 ) C_ RR |
109 |
108
|
sseli |
|- ( x e. ( -u _pi [,] 0 ) -> x e. RR ) |
110 |
109
|
adantl |
|- ( ( ph /\ x e. ( -u _pi [,] 0 ) ) -> x e. RR ) |
111 |
106 110
|
remulcld |
|- ( ( ph /\ x e. ( -u _pi [,] 0 ) ) -> ( N x. x ) e. RR ) |
112 |
111
|
recoscld |
|- ( ( ph /\ x e. ( -u _pi [,] 0 ) ) -> ( cos ` ( N x. x ) ) e. RR ) |
113 |
|
0red |
|- ( ph -> 0 e. RR ) |
114 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
115 |
114
|
a1i |
|- ( ph -> cos e. ( CC -cn-> CC ) ) |
116 |
|
ax-resscn |
|- RR C_ CC |
117 |
108 116
|
sstri |
|- ( -u _pi [,] 0 ) C_ CC |
118 |
117
|
a1i |
|- ( ph -> ( -u _pi [,] 0 ) C_ CC ) |
119 |
25
|
recnd |
|- ( ph -> N e. CC ) |
120 |
|
ssid |
|- CC C_ CC |
121 |
120
|
a1i |
|- ( ph -> CC C_ CC ) |
122 |
118 119 121
|
constcncfg |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> N ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) |
123 |
118 121
|
idcncfg |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> x ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) |
124 |
122 123
|
mulcncf |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> ( N x. x ) ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) |
125 |
115 124
|
cncfmpt1f |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> ( cos ` ( N x. x ) ) ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) |
126 |
|
cniccibl |
|- ( ( -u _pi e. RR /\ 0 e. RR /\ ( x e. ( -u _pi [,] 0 ) |-> ( cos ` ( N x. x ) ) ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) -> ( x e. ( -u _pi [,] 0 ) |-> ( cos ` ( N x. x ) ) ) e. L^1 ) |
127 |
6 113 125 126
|
syl3anc |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> ( cos ` ( N x. x ) ) ) e. L^1 ) |
128 |
103 105 112 127
|
iblss |
|- ( ph -> ( x e. ( -u _pi (,) 0 ) |-> ( cos ` ( N x. x ) ) ) e. L^1 ) |
129 |
97 101 128
|
iblmulc2 |
|- ( ph -> ( x e. ( -u _pi (,) 0 ) |-> ( -u 1 x. ( cos ` ( N x. x ) ) ) ) e. L^1 ) |
130 |
95 129
|
eqeltrd |
|- ( ph -> ( x e. ( -u _pi (,) 0 ) |-> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) ) e. L^1 ) |
131 |
|
elioore |
|- ( x e. ( 0 (,) _pi ) -> x e. RR ) |
132 |
131 18 32
|
syl2anc2 |
|- ( x e. ( 0 (,) _pi ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
133 |
39
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> T e. RR+ ) |
134 |
|
0red |
|- ( x e. ( 0 (,) _pi ) -> 0 e. RR ) |
135 |
134
|
rexrd |
|- ( x e. ( 0 (,) _pi ) -> 0 e. RR* ) |
136 |
4
|
rexri |
|- _pi e. RR* |
137 |
136
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> _pi e. RR* ) |
138 |
|
id |
|- ( x e. ( 0 (,) _pi ) -> x e. ( 0 (,) _pi ) ) |
139 |
|
ioogtlb |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ x e. ( 0 (,) _pi ) ) -> 0 < x ) |
140 |
135 137 138 139
|
syl3anc |
|- ( x e. ( 0 (,) _pi ) -> 0 < x ) |
141 |
134 131 140
|
ltled |
|- ( x e. ( 0 (,) _pi ) -> 0 <_ x ) |
142 |
4
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> _pi e. RR ) |
143 |
57
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> T e. RR ) |
144 |
|
iooltub |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ x e. ( 0 (,) _pi ) ) -> x < _pi ) |
145 |
135 137 138 144
|
syl3anc |
|- ( x e. ( 0 (,) _pi ) -> x < _pi ) |
146 |
|
2timesgt |
|- ( _pi e. RR+ -> _pi < ( 2 x. _pi ) ) |
147 |
36 146
|
ax-mp |
|- _pi < ( 2 x. _pi ) |
148 |
147 1
|
breqtrri |
|- _pi < T |
149 |
148
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> _pi < T ) |
150 |
131 142 143 145 149
|
lttrd |
|- ( x e. ( 0 (,) _pi ) -> x < T ) |
151 |
|
modid |
|- ( ( ( x e. RR /\ T e. RR+ ) /\ ( 0 <_ x /\ x < T ) ) -> ( x mod T ) = x ) |
152 |
131 133 141 150 151
|
syl22anc |
|- ( x e. ( 0 (,) _pi ) -> ( x mod T ) = x ) |
153 |
152 145
|
eqbrtrd |
|- ( x e. ( 0 (,) _pi ) -> ( x mod T ) < _pi ) |
154 |
153
|
iftrued |
|- ( x e. ( 0 (,) _pi ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 ) |
155 |
132 154
|
eqtrd |
|- ( x e. ( 0 (,) _pi ) -> ( F ` x ) = 1 ) |
156 |
155
|
oveq1d |
|- ( x e. ( 0 (,) _pi ) -> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) = ( 1 x. ( cos ` ( N x. x ) ) ) ) |
157 |
156
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) = ( 1 x. ( cos ` ( N x. x ) ) ) ) |
158 |
157
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( 1 x. ( cos ` ( N x. x ) ) ) ) ) |
159 |
25
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. RR ) |
160 |
131
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> x e. RR ) |
161 |
159 160
|
remulcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. x ) e. RR ) |
162 |
161
|
recoscld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( cos ` ( N x. x ) ) e. RR ) |
163 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
164 |
163
|
a1i |
|- ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
165 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
166 |
165
|
a1i |
|- ( ph -> ( 0 (,) _pi ) e. dom vol ) |
167 |
25
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. RR ) |
168 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
169 |
8 4 168
|
mp2an |
|- ( 0 [,] _pi ) C_ RR |
170 |
169
|
sseli |
|- ( x e. ( 0 [,] _pi ) -> x e. RR ) |
171 |
170
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. RR ) |
172 |
167 171
|
remulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N x. x ) e. RR ) |
173 |
172
|
recoscld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( cos ` ( N x. x ) ) e. RR ) |
174 |
169 116
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
175 |
174
|
a1i |
|- ( ph -> ( 0 [,] _pi ) C_ CC ) |
176 |
175 119 121
|
constcncfg |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> N ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
177 |
175 121
|
idcncfg |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> x ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
178 |
176 177
|
mulcncf |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( N x. x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
179 |
115 178
|
cncfmpt1f |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( cos ` ( N x. x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
180 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( cos ` ( N x. x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( cos ` ( N x. x ) ) ) e. L^1 ) |
181 |
113 7 179 180
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( cos ` ( N x. x ) ) ) e. L^1 ) |
182 |
164 166 173 181
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( cos ` ( N x. x ) ) ) e. L^1 ) |
183 |
96 162 182
|
iblmulc2 |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( 1 x. ( cos ` ( N x. x ) ) ) ) e. L^1 ) |
184 |
158 183
|
eqeltrd |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) ) e. L^1 ) |
185 |
6 7 15 30 130 184
|
itgsplitioo |
|- ( ph -> S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x = ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x ) ) |
186 |
185
|
oveq1d |
|- ( ph -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x / _pi ) = ( ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x ) / _pi ) ) |
187 |
94
|
itgeq2dv |
|- ( ph -> S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x = S. ( -u _pi (,) 0 ) ( -u 1 x. ( cos ` ( N x. x ) ) ) _d x ) |
188 |
97 101 128
|
itgmulc2 |
|- ( ph -> ( -u 1 x. S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x ) = S. ( -u _pi (,) 0 ) ( -u 1 x. ( cos ` ( N x. x ) ) ) _d x ) |
189 |
|
oveq1 |
|- ( N = 0 -> ( N x. x ) = ( 0 x. x ) ) |
190 |
|
ioosscn |
|- ( -u _pi (,) 0 ) C_ CC |
191 |
190
|
sseli |
|- ( x e. ( -u _pi (,) 0 ) -> x e. CC ) |
192 |
191
|
mul02d |
|- ( x e. ( -u _pi (,) 0 ) -> ( 0 x. x ) = 0 ) |
193 |
189 192
|
sylan9eq |
|- ( ( N = 0 /\ x e. ( -u _pi (,) 0 ) ) -> ( N x. x ) = 0 ) |
194 |
193
|
fveq2d |
|- ( ( N = 0 /\ x e. ( -u _pi (,) 0 ) ) -> ( cos ` ( N x. x ) ) = ( cos ` 0 ) ) |
195 |
|
cos0 |
|- ( cos ` 0 ) = 1 |
196 |
194 195
|
eqtrdi |
|- ( ( N = 0 /\ x e. ( -u _pi (,) 0 ) ) -> ( cos ` ( N x. x ) ) = 1 ) |
197 |
196
|
adantll |
|- ( ( ( ph /\ N = 0 ) /\ x e. ( -u _pi (,) 0 ) ) -> ( cos ` ( N x. x ) ) = 1 ) |
198 |
197
|
itgeq2dv |
|- ( ( ph /\ N = 0 ) -> S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x = S. ( -u _pi (,) 0 ) 1 _d x ) |
199 |
|
ioovolcl |
|- ( ( -u _pi e. RR /\ 0 e. RR ) -> ( vol ` ( -u _pi (,) 0 ) ) e. RR ) |
200 |
5 8 199
|
mp2an |
|- ( vol ` ( -u _pi (,) 0 ) ) e. RR |
201 |
200
|
a1i |
|- ( ph -> ( vol ` ( -u _pi (,) 0 ) ) e. RR ) |
202 |
|
itgconst |
|- ( ( ( -u _pi (,) 0 ) e. dom vol /\ ( vol ` ( -u _pi (,) 0 ) ) e. RR /\ 1 e. CC ) -> S. ( -u _pi (,) 0 ) 1 _d x = ( 1 x. ( vol ` ( -u _pi (,) 0 ) ) ) ) |
203 |
105 201 96 202
|
syl3anc |
|- ( ph -> S. ( -u _pi (,) 0 ) 1 _d x = ( 1 x. ( vol ` ( -u _pi (,) 0 ) ) ) ) |
204 |
203
|
adantr |
|- ( ( ph /\ N = 0 ) -> S. ( -u _pi (,) 0 ) 1 _d x = ( 1 x. ( vol ` ( -u _pi (,) 0 ) ) ) ) |
205 |
|
volioo |
|- ( ( -u _pi e. RR /\ 0 e. RR /\ -u _pi <_ 0 ) -> ( vol ` ( -u _pi (,) 0 ) ) = ( 0 - -u _pi ) ) |
206 |
5 8 10 205
|
mp3an |
|- ( vol ` ( -u _pi (,) 0 ) ) = ( 0 - -u _pi ) |
207 |
|
0cn |
|- 0 e. CC |
208 |
207 42
|
subnegi |
|- ( 0 - -u _pi ) = ( 0 + _pi ) |
209 |
206 208 51
|
3eqtri |
|- ( vol ` ( -u _pi (,) 0 ) ) = _pi |
210 |
209
|
a1i |
|- ( ph -> ( vol ` ( -u _pi (,) 0 ) ) = _pi ) |
211 |
210
|
oveq2d |
|- ( ph -> ( 1 x. ( vol ` ( -u _pi (,) 0 ) ) ) = ( 1 x. _pi ) ) |
212 |
42
|
a1i |
|- ( ph -> _pi e. CC ) |
213 |
212
|
mulid2d |
|- ( ph -> ( 1 x. _pi ) = _pi ) |
214 |
211 213
|
eqtrd |
|- ( ph -> ( 1 x. ( vol ` ( -u _pi (,) 0 ) ) ) = _pi ) |
215 |
214
|
adantr |
|- ( ( ph /\ N = 0 ) -> ( 1 x. ( vol ` ( -u _pi (,) 0 ) ) ) = _pi ) |
216 |
198 204 215
|
3eqtrd |
|- ( ( ph /\ N = 0 ) -> S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x = _pi ) |
217 |
216
|
oveq2d |
|- ( ( ph /\ N = 0 ) -> ( -u 1 x. S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x ) = ( -u 1 x. _pi ) ) |
218 |
42
|
mulm1i |
|- ( -u 1 x. _pi ) = -u _pi |
219 |
218
|
a1i |
|- ( ( ph /\ N = 0 ) -> ( -u 1 x. _pi ) = -u _pi ) |
220 |
|
iftrue |
|- ( N = 0 -> if ( N = 0 , -u _pi , 0 ) = -u _pi ) |
221 |
220
|
eqcomd |
|- ( N = 0 -> -u _pi = if ( N = 0 , -u _pi , 0 ) ) |
222 |
221
|
adantl |
|- ( ( ph /\ N = 0 ) -> -u _pi = if ( N = 0 , -u _pi , 0 ) ) |
223 |
217 219 222
|
3eqtrd |
|- ( ( ph /\ N = 0 ) -> ( -u 1 x. S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x ) = if ( N = 0 , -u _pi , 0 ) ) |
224 |
25
|
adantr |
|- ( ( ph /\ -. N = 0 ) -> N e. RR ) |
225 |
3
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
226 |
225
|
adantr |
|- ( ( ph /\ -. N = 0 ) -> 0 <_ N ) |
227 |
|
neqne |
|- ( -. N = 0 -> N =/= 0 ) |
228 |
227
|
adantl |
|- ( ( ph /\ -. N = 0 ) -> N =/= 0 ) |
229 |
224 226 228
|
ne0gt0d |
|- ( ( ph /\ -. N = 0 ) -> 0 < N ) |
230 |
|
1cnd |
|- ( ( ph /\ 0 < N ) -> 1 e. CC ) |
231 |
230
|
negcld |
|- ( ( ph /\ 0 < N ) -> -u 1 e. CC ) |
232 |
231
|
mul01d |
|- ( ( ph /\ 0 < N ) -> ( -u 1 x. 0 ) = 0 ) |
233 |
119
|
adantr |
|- ( ( ph /\ 0 < N ) -> N e. CC ) |
234 |
5
|
a1i |
|- ( ( ph /\ 0 < N ) -> -u _pi e. RR ) |
235 |
|
0red |
|- ( ( ph /\ 0 < N ) -> 0 e. RR ) |
236 |
10
|
a1i |
|- ( ( ph /\ 0 < N ) -> -u _pi <_ 0 ) |
237 |
|
simpr |
|- ( ( ph /\ 0 < N ) -> 0 < N ) |
238 |
237
|
gt0ne0d |
|- ( ( ph /\ 0 < N ) -> N =/= 0 ) |
239 |
233 234 235 236 238
|
itgcoscmulx |
|- ( ( ph /\ 0 < N ) -> S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x = ( ( ( sin ` ( N x. 0 ) ) - ( sin ` ( N x. -u _pi ) ) ) / N ) ) |
240 |
119
|
mul01d |
|- ( ph -> ( N x. 0 ) = 0 ) |
241 |
240
|
fveq2d |
|- ( ph -> ( sin ` ( N x. 0 ) ) = ( sin ` 0 ) ) |
242 |
|
sin0 |
|- ( sin ` 0 ) = 0 |
243 |
241 242
|
eqtrdi |
|- ( ph -> ( sin ` ( N x. 0 ) ) = 0 ) |
244 |
119 212
|
mulneg2d |
|- ( ph -> ( N x. -u _pi ) = -u ( N x. _pi ) ) |
245 |
244
|
fveq2d |
|- ( ph -> ( sin ` ( N x. -u _pi ) ) = ( sin ` -u ( N x. _pi ) ) ) |
246 |
119 212
|
mulcld |
|- ( ph -> ( N x. _pi ) e. CC ) |
247 |
|
sinneg |
|- ( ( N x. _pi ) e. CC -> ( sin ` -u ( N x. _pi ) ) = -u ( sin ` ( N x. _pi ) ) ) |
248 |
246 247
|
syl |
|- ( ph -> ( sin ` -u ( N x. _pi ) ) = -u ( sin ` ( N x. _pi ) ) ) |
249 |
245 248
|
eqtrd |
|- ( ph -> ( sin ` ( N x. -u _pi ) ) = -u ( sin ` ( N x. _pi ) ) ) |
250 |
243 249
|
oveq12d |
|- ( ph -> ( ( sin ` ( N x. 0 ) ) - ( sin ` ( N x. -u _pi ) ) ) = ( 0 - -u ( sin ` ( N x. _pi ) ) ) ) |
251 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
252 |
246
|
sincld |
|- ( ph -> ( sin ` ( N x. _pi ) ) e. CC ) |
253 |
251 252
|
subnegd |
|- ( ph -> ( 0 - -u ( sin ` ( N x. _pi ) ) ) = ( 0 + ( sin ` ( N x. _pi ) ) ) ) |
254 |
252
|
addid2d |
|- ( ph -> ( 0 + ( sin ` ( N x. _pi ) ) ) = ( sin ` ( N x. _pi ) ) ) |
255 |
250 253 254
|
3eqtrd |
|- ( ph -> ( ( sin ` ( N x. 0 ) ) - ( sin ` ( N x. -u _pi ) ) ) = ( sin ` ( N x. _pi ) ) ) |
256 |
255
|
adantr |
|- ( ( ph /\ 0 < N ) -> ( ( sin ` ( N x. 0 ) ) - ( sin ` ( N x. -u _pi ) ) ) = ( sin ` ( N x. _pi ) ) ) |
257 |
256
|
oveq1d |
|- ( ( ph /\ 0 < N ) -> ( ( ( sin ` ( N x. 0 ) ) - ( sin ` ( N x. -u _pi ) ) ) / N ) = ( ( sin ` ( N x. _pi ) ) / N ) ) |
258 |
3
|
nn0zd |
|- ( ph -> N e. ZZ ) |
259 |
|
sinkpi |
|- ( N e. ZZ -> ( sin ` ( N x. _pi ) ) = 0 ) |
260 |
258 259
|
syl |
|- ( ph -> ( sin ` ( N x. _pi ) ) = 0 ) |
261 |
260
|
oveq1d |
|- ( ph -> ( ( sin ` ( N x. _pi ) ) / N ) = ( 0 / N ) ) |
262 |
261
|
adantr |
|- ( ( ph /\ 0 < N ) -> ( ( sin ` ( N x. _pi ) ) / N ) = ( 0 / N ) ) |
263 |
233 238
|
div0d |
|- ( ( ph /\ 0 < N ) -> ( 0 / N ) = 0 ) |
264 |
262 263
|
eqtrd |
|- ( ( ph /\ 0 < N ) -> ( ( sin ` ( N x. _pi ) ) / N ) = 0 ) |
265 |
239 257 264
|
3eqtrd |
|- ( ( ph /\ 0 < N ) -> S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x = 0 ) |
266 |
265
|
oveq2d |
|- ( ( ph /\ 0 < N ) -> ( -u 1 x. S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x ) = ( -u 1 x. 0 ) ) |
267 |
238
|
neneqd |
|- ( ( ph /\ 0 < N ) -> -. N = 0 ) |
268 |
267
|
iffalsed |
|- ( ( ph /\ 0 < N ) -> if ( N = 0 , -u _pi , 0 ) = 0 ) |
269 |
232 266 268
|
3eqtr4d |
|- ( ( ph /\ 0 < N ) -> ( -u 1 x. S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x ) = if ( N = 0 , -u _pi , 0 ) ) |
270 |
229 269
|
syldan |
|- ( ( ph /\ -. N = 0 ) -> ( -u 1 x. S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x ) = if ( N = 0 , -u _pi , 0 ) ) |
271 |
223 270
|
pm2.61dan |
|- ( ph -> ( -u 1 x. S. ( -u _pi (,) 0 ) ( cos ` ( N x. x ) ) _d x ) = if ( N = 0 , -u _pi , 0 ) ) |
272 |
187 188 271
|
3eqtr2d |
|- ( ph -> S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x = if ( N = 0 , -u _pi , 0 ) ) |
273 |
157
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x = S. ( 0 (,) _pi ) ( 1 x. ( cos ` ( N x. x ) ) ) _d x ) |
274 |
96 162 182
|
itgmulc2 |
|- ( ph -> ( 1 x. S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x ) = S. ( 0 (,) _pi ) ( 1 x. ( cos ` ( N x. x ) ) ) _d x ) |
275 |
162 182
|
itgcl |
|- ( ph -> S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x e. CC ) |
276 |
275
|
mulid2d |
|- ( ph -> ( 1 x. S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x ) = S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x ) |
277 |
|
simpl |
|- ( ( N = 0 /\ x e. ( 0 (,) _pi ) ) -> N = 0 ) |
278 |
277
|
oveq1d |
|- ( ( N = 0 /\ x e. ( 0 (,) _pi ) ) -> ( N x. x ) = ( 0 x. x ) ) |
279 |
131
|
recnd |
|- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
280 |
279
|
adantl |
|- ( ( N = 0 /\ x e. ( 0 (,) _pi ) ) -> x e. CC ) |
281 |
280
|
mul02d |
|- ( ( N = 0 /\ x e. ( 0 (,) _pi ) ) -> ( 0 x. x ) = 0 ) |
282 |
278 281
|
eqtrd |
|- ( ( N = 0 /\ x e. ( 0 (,) _pi ) ) -> ( N x. x ) = 0 ) |
283 |
282
|
fveq2d |
|- ( ( N = 0 /\ x e. ( 0 (,) _pi ) ) -> ( cos ` ( N x. x ) ) = ( cos ` 0 ) ) |
284 |
283 195
|
eqtrdi |
|- ( ( N = 0 /\ x e. ( 0 (,) _pi ) ) -> ( cos ` ( N x. x ) ) = 1 ) |
285 |
284
|
adantll |
|- ( ( ( ph /\ N = 0 ) /\ x e. ( 0 (,) _pi ) ) -> ( cos ` ( N x. x ) ) = 1 ) |
286 |
285
|
itgeq2dv |
|- ( ( ph /\ N = 0 ) -> S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x = S. ( 0 (,) _pi ) 1 _d x ) |
287 |
|
ioovolcl |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( vol ` ( 0 (,) _pi ) ) e. RR ) |
288 |
8 4 287
|
mp2an |
|- ( vol ` ( 0 (,) _pi ) ) e. RR |
289 |
|
ax-1cn |
|- 1 e. CC |
290 |
|
itgconst |
|- ( ( ( 0 (,) _pi ) e. dom vol /\ ( vol ` ( 0 (,) _pi ) ) e. RR /\ 1 e. CC ) -> S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) ) |
291 |
165 288 289 290
|
mp3an |
|- S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) |
292 |
291
|
a1i |
|- ( ( ph /\ N = 0 ) -> S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) ) |
293 |
42
|
mulid2i |
|- ( 1 x. _pi ) = _pi |
294 |
|
volioo |
|- ( ( 0 e. RR /\ _pi e. RR /\ 0 <_ _pi ) -> ( vol ` ( 0 (,) _pi ) ) = ( _pi - 0 ) ) |
295 |
8 4 12 294
|
mp3an |
|- ( vol ` ( 0 (,) _pi ) ) = ( _pi - 0 ) |
296 |
42
|
subid1i |
|- ( _pi - 0 ) = _pi |
297 |
295 296
|
eqtri |
|- ( vol ` ( 0 (,) _pi ) ) = _pi |
298 |
297
|
oveq2i |
|- ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = ( 1 x. _pi ) |
299 |
298
|
a1i |
|- ( N = 0 -> ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = ( 1 x. _pi ) ) |
300 |
|
iftrue |
|- ( N = 0 -> if ( N = 0 , _pi , 0 ) = _pi ) |
301 |
293 299 300
|
3eqtr4a |
|- ( N = 0 -> ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = if ( N = 0 , _pi , 0 ) ) |
302 |
301
|
adantl |
|- ( ( ph /\ N = 0 ) -> ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = if ( N = 0 , _pi , 0 ) ) |
303 |
286 292 302
|
3eqtrd |
|- ( ( ph /\ N = 0 ) -> S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x = if ( N = 0 , _pi , 0 ) ) |
304 |
260 243
|
oveq12d |
|- ( ph -> ( ( sin ` ( N x. _pi ) ) - ( sin ` ( N x. 0 ) ) ) = ( 0 - 0 ) ) |
305 |
251
|
subidd |
|- ( ph -> ( 0 - 0 ) = 0 ) |
306 |
304 305
|
eqtrd |
|- ( ph -> ( ( sin ` ( N x. _pi ) ) - ( sin ` ( N x. 0 ) ) ) = 0 ) |
307 |
306
|
oveq1d |
|- ( ph -> ( ( ( sin ` ( N x. _pi ) ) - ( sin ` ( N x. 0 ) ) ) / N ) = ( 0 / N ) ) |
308 |
307
|
adantr |
|- ( ( ph /\ 0 < N ) -> ( ( ( sin ` ( N x. _pi ) ) - ( sin ` ( N x. 0 ) ) ) / N ) = ( 0 / N ) ) |
309 |
308 263
|
eqtrd |
|- ( ( ph /\ 0 < N ) -> ( ( ( sin ` ( N x. _pi ) ) - ( sin ` ( N x. 0 ) ) ) / N ) = 0 ) |
310 |
4
|
a1i |
|- ( ( ph /\ 0 < N ) -> _pi e. RR ) |
311 |
12
|
a1i |
|- ( ( ph /\ 0 < N ) -> 0 <_ _pi ) |
312 |
233 235 310 311 238
|
itgcoscmulx |
|- ( ( ph /\ 0 < N ) -> S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x = ( ( ( sin ` ( N x. _pi ) ) - ( sin ` ( N x. 0 ) ) ) / N ) ) |
313 |
267
|
iffalsed |
|- ( ( ph /\ 0 < N ) -> if ( N = 0 , _pi , 0 ) = 0 ) |
314 |
309 312 313
|
3eqtr4d |
|- ( ( ph /\ 0 < N ) -> S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x = if ( N = 0 , _pi , 0 ) ) |
315 |
229 314
|
syldan |
|- ( ( ph /\ -. N = 0 ) -> S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x = if ( N = 0 , _pi , 0 ) ) |
316 |
303 315
|
pm2.61dan |
|- ( ph -> S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x = if ( N = 0 , _pi , 0 ) ) |
317 |
276 316
|
eqtrd |
|- ( ph -> ( 1 x. S. ( 0 (,) _pi ) ( cos ` ( N x. x ) ) _d x ) = if ( N = 0 , _pi , 0 ) ) |
318 |
273 274 317
|
3eqtr2d |
|- ( ph -> S. ( 0 (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x = if ( N = 0 , _pi , 0 ) ) |
319 |
272 318
|
oveq12d |
|- ( ph -> ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x ) = ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) ) |
320 |
319
|
oveq1d |
|- ( ph -> ( ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x ) / _pi ) = ( ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) / _pi ) ) |
321 |
220 300
|
oveq12d |
|- ( N = 0 -> ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) = ( -u _pi + _pi ) ) |
322 |
321 49
|
eqtrdi |
|- ( N = 0 -> ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) = 0 ) |
323 |
|
iffalse |
|- ( -. N = 0 -> if ( N = 0 , -u _pi , 0 ) = 0 ) |
324 |
|
iffalse |
|- ( -. N = 0 -> if ( N = 0 , _pi , 0 ) = 0 ) |
325 |
323 324
|
oveq12d |
|- ( -. N = 0 -> ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) = ( 0 + 0 ) ) |
326 |
|
00id |
|- ( 0 + 0 ) = 0 |
327 |
325 326
|
eqtrdi |
|- ( -. N = 0 -> ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) = 0 ) |
328 |
322 327
|
pm2.61i |
|- ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) = 0 |
329 |
328
|
oveq1i |
|- ( ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) / _pi ) = ( 0 / _pi ) |
330 |
8 11
|
gtneii |
|- _pi =/= 0 |
331 |
42 330
|
div0i |
|- ( 0 / _pi ) = 0 |
332 |
329 331
|
eqtri |
|- ( ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) / _pi ) = 0 |
333 |
332
|
a1i |
|- ( ph -> ( ( if ( N = 0 , -u _pi , 0 ) + if ( N = 0 , _pi , 0 ) ) / _pi ) = 0 ) |
334 |
186 320 333
|
3eqtrd |
|- ( ph -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( N x. x ) ) ) _d x / _pi ) = 0 ) |