Step |
Hyp |
Ref |
Expression |
1 |
|
sraassa.a |
|- A = ( ( subringAlg ` W ) ` S ) |
2 |
1
|
a1i |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A = ( ( subringAlg ` W ) ` S ) ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
3
|
subrgss |
|- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
5 |
4
|
adantl |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S C_ ( Base ` W ) ) |
6 |
2 5
|
srabase |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Base ` A ) ) |
7 |
2 5
|
srasca |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( W |`s S ) = ( Scalar ` A ) ) |
8 |
|
eqid |
|- ( W |`s S ) = ( W |`s S ) |
9 |
8
|
subrgbas |
|- ( S e. ( SubRing ` W ) -> S = ( Base ` ( W |`s S ) ) ) |
10 |
9
|
adantl |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S = ( Base ` ( W |`s S ) ) ) |
11 |
2 5
|
sravsca |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( .r ` W ) = ( .s ` A ) ) |
12 |
2 5
|
sramulr |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( .r ` W ) = ( .r ` A ) ) |
13 |
1
|
sralmod |
|- ( S e. ( SubRing ` W ) -> A e. LMod ) |
14 |
13
|
adantl |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. LMod ) |
15 |
|
crngring |
|- ( W e. CRing -> W e. Ring ) |
16 |
15
|
adantr |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> W e. Ring ) |
17 |
|
eqidd |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Base ` W ) ) |
18 |
2 5
|
sraaddg |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( +g ` W ) = ( +g ` A ) ) |
19 |
18
|
oveqdr |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` A ) y ) ) |
20 |
12
|
oveqdr |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( x ( .r ` A ) y ) ) |
21 |
17 6 19 20
|
ringpropd |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( W e. Ring <-> A e. Ring ) ) |
22 |
16 21
|
mpbid |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. Ring ) |
23 |
8
|
subrgcrng |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( W |`s S ) e. CRing ) |
24 |
16
|
adantr |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> W e. Ring ) |
25 |
5
|
adantr |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> S C_ ( Base ` W ) ) |
26 |
|
simpr1 |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. S ) |
27 |
25 26
|
sseldd |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
28 |
|
simpr2 |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
29 |
|
simpr3 |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
30 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
31 |
3 30
|
ringass |
|- ( ( W e. Ring /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
32 |
24 27 28 29 31
|
syl13anc |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
33 |
|
eqid |
|- ( mulGrp ` W ) = ( mulGrp ` W ) |
34 |
33
|
crngmgp |
|- ( W e. CRing -> ( mulGrp ` W ) e. CMnd ) |
35 |
34
|
ad2antrr |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( mulGrp ` W ) e. CMnd ) |
36 |
33 3
|
mgpbas |
|- ( Base ` W ) = ( Base ` ( mulGrp ` W ) ) |
37 |
33 30
|
mgpplusg |
|- ( .r ` W ) = ( +g ` ( mulGrp ` W ) ) |
38 |
36 37
|
cmn12 |
|- ( ( ( mulGrp ` W ) e. CMnd /\ ( y e. ( Base ` W ) /\ x e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .r ` W ) z ) ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
39 |
35 28 27 29 38
|
syl13anc |
|- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .r ` W ) z ) ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
40 |
6 7 10 11 12 14 22 23 32 39
|
isassad |
|- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. AssAlg ) |